- On the State Constrained Optimal Control of the Stefan Type Free Boundary Problems We analyze the state constrained inverse Stefan type parabolic free boundary problem as an optimal control problem in the Sobolev-Besov spaces framework. Boundary heat flux, density of heat sources, and free boundary are components of the control vector. Cost functional is the sum of the L_2-norm declinations of the temperature measurement at the final moment, the phase transition temperature, the final position of the free boundary, and the penalty term, taking into account the state constraint on the temperature. We prove the existence of optimal control, Frechet differentiability, and optimality condition in the Besov spaces under minimal regularity assumptions on the data. We pursue space-time discretization through finite differences and prove that the sequence of discrete optimal control problems converges to the original problem both with respect to functional and control. 4 authors · Nov 29, 2017
- Frechet Differentiability in Besov Spaces in the Optimal Control of Parabolic Free Boundary Problems We consider the inverse Stefan type free boundary problem, where information on the boundary heat flux and density of the sources are missing and must be found along with the temperature and the free boundary. We pursue optimal control framework where boundary heat flux, density of sources, and free boundary are components of the control vector. The optimality criteria consists of the minimization of the L_2-norm declinations of the temperature measurements at the final moment, phase transition temperature, and final position of the free boundary. We prove the Frechet differentiability in Besov spaces, and derive the formula for the Frechet differential under minimal regularity assumptions on the data. The result implies a necessary condition for optimal control and opens the way to the application of projective gradient methods in Besov spaces for the numerical solution of the inverse Stefan problem. 2 authors · Mar 31, 2016
- Optimal Control of Coefficients in Parabolic Free Boundary Problems Modeling Laser Ablation Inverse Stefan problem arising in modeling of laser ablation of biomedical tissues is analyzed, where information on the coefficients, heat flux on the fixed boundary, and density of heat sources are missing and must be found along with the temperature and free boundary. Optimal control framework is employed, where the missing data and the free boundary are components of the control vector, and optimality criteria are based on the final moment measurement of the temperature and position of the free boundary. Discretization by finite differences is pursued, and convergence of the discrete optimal control problems to the original problem is proven. 2 authors · Oct 23, 2017
- Weak localization in radiative transfer of acoustic waves in a randomly-fluctuating slab This paper concerns the derivation of radiative transfer equations for acoustic waves propagating in a randomly fluctuating slab (between two parallel planes) in the weak-scattering regime, and the study of boundary effects through an asymptotic analysis of the Wigner transform of the wave solution. These radiative transfer equations allow to model the transport of wave energy density, taking into account the scattering by random heterogeneities. The approach builds on the method of images, where the slab is extended to a full-space, with a periodic map of mechanical properties and a series of sources located along a periodic pattern. Two types of boundary effects, both on the (small) scale of the wavelength, are observed: one at the boundaries of the slab, and one inside the domain. The former impact the entire energy density (coherent as well as incoherent) and is also observed in half-spaces. The latter, more specific to slabs, corresponds to the constructive interference of waves that have reflected at least twice on the boundaries of the slab and only impacts the coherent part of the energy density. 3 authors · Aug 1, 2023
- Asymptotic behaviour of the heat equation in an exterior domain with general boundary conditions II. The case of bounded and of L^{p} data In this work, we study the asymptotic behaviour of solutions to the heat equation in exterior domains, i.e., domains which are the complement of a smooth compact set in R^N. Different homogeneous boundary conditions are considered, including Dirichlet, Robin, and Neumann ones. In this second part of our work, we consider the case of bounded initial data and prove that, after some correction term, the solutions become close to the solutions in the whole space and show how complex behaviours appear. We also analyse the case of initial data in L^p with 1<p<infty where all solutions essentially decay to 0 and the convergence rate could be arbitrarily slow. 2 authors · Oct 17, 2024
- Morphological Regimes of Rotating Moist Convection Moist convection is a physical process where the latent heat released by condensation acts as a buoyancy source that can enhance or even trigger an overturning convective instability. Since the saturation temperature often decreases with height, condensation releases latent heat preferentially in regions of upflow. Due to this inhomogeneous heat source, moist convection may be more sensitive to changes in flow morphology, such as those induced by rotation, than dry Rayleigh-B\'enard convection. In order to study the effects of rotation on flows driven by latent heat release, we present a suite of numerical simulations that solve the Rainy-B\'enard equations (Vallis et al. 2019). We identify three morphological regimes: a cellular regime and a plume regime broadly analogous to those found in rotating Rayleigh B\'enard convection, and a novel funnel regime that lacks a clear analog within the regimes exhibited by dry convection. We measure energy fluxes through the system and report rotational scalings of the Reynolds and moist Nusselt numbers. We find that moist static energy transport, as measured by a moist Nusselt number, is significantly enhanced in the funnel regime without a corresponding enhancement in Reynolds number, indicating that this funnel regime produces structures with more favorable correlations between the temperature and vertical velocity. 5 authors · May 2, 2025
- Solving Navier-Stokes Equations Using Data-free Physics-Informed Neural Networks With Hard Boundary Conditions In recent years, Physics-Informed Neural Networks (PINNs) have emerged as a powerful and robust framework for solving nonlinear differential equations across a wide range of scientific and engineering disciplines, including biology, geophysics, astrophysics and fluid dynamics. In the PINN framework, the governing partial differential equations, along with initial and boundary conditions, are encoded directly into the loss function, enabling the network to learn solutions that are consistent with the underlying physics. In this work, we employ the PINN framework to solve the dimensionless Navier-Stokes equations for three two-dimensional incompressible, steady, laminar flow problems without using any labeled data. The boundary and initial conditions are enforced in a hard manner, ensuring they are satisfied exactly rather than penalized during training. We validate the PINN predicted velocity profiles, drag coefficients and pressure profiles against the conventional computational fluid dynamics (CFD) simulations for moderate to high values of Reynolds number (Re). It is observed that the PINN predictions show good agreement with the CFD results at lower Re. We also extend our analysis to a transient condition and find that our method is equally capable of simulating complex time-dependent flow dynamics. To quantitatively assess the accuracy, we compute the L_2 normalized error, which lies in the range O(10^{-4}) - O(10^{-1}) for our chosen case studies. 4 authors · Nov 18, 2025
1 Improving Rectified Flow with Boundary Conditions Rectified Flow offers a simple and effective approach to high-quality generative modeling by learning a velocity field. However, we identify a limitation in directly modeling the velocity with an unconstrained neural network: the learned velocity often fails to satisfy certain boundary conditions, leading to inaccurate velocity field estimations that deviate from the desired ODE. This issue is particularly critical during stochastic sampling at inference, as the score function's errors are amplified near the boundary. To mitigate this, we propose a Boundary-enforced Rectified Flow Model (Boundary RF Model), in which we enforce boundary conditions with a minimal code modification. Boundary RF Model improves performance over vanilla RF model, demonstrating 8.01% improvement in FID score on ImageNet using ODE sampling and 8.98% improvement using SDE sampling. 8 authors · Jun 18, 2025
- Boundary Element and Finite Element Coupling for Aeroacoustics Simulations We consider the scattering of acoustic perturbations in a presence of a flow. We suppose that the space can be split into a zone where the flow is uniform and a zone where the flow is potential. In the first zone, we apply a Prandtl-Glauert transformation to recover the Helmholtz equation. The well-known setting of boundary element method for the Helmholtz equation is available. In the second zone, the flow quantities are space dependent, we have to consider a local resolution, namely the finite element method. Herein, we carry out the coupling of these two methods and present various applications and validation test cases. The source term is given through the decomposition of an incident acoustic field on a section of the computational domain's boundary. 6 authors · Feb 11, 2014
- The bolometric Bond albedo and energy balance of Uranus Using a newly developed `holistic' atmospheric model of the aerosol structure in Uranus's atmosphere, based upon observations made by HST/STIS, Gemini/NIFS and IRTF/SpeX from 2000 -- 2009, we make a new estimate the bolometric Bond albedo of Uranus during this time of A^* = 0.338 pm 0.011, with a phase integral of q^* = 1.36 pm 0.03. Then, using a simple seasonal model, developed to be consistent with the disc-integrated blue and green magnitude data from the Lowell Observatory from 1950 to 2016, we model how Uranus's reflectivity and heat budget vary during its orbit and determine new orbital-mean average value for the bolometric Bond albedo of A^* = 0.349 pm 0.016 and for the absorbed solar flux of P_mathrm{in}=0.604 pm 0.027 W m^{-2}. Assuming the outgoing thermal flux to be P_mathrm{out}=0.693 pm 0.013 W m^{-2}, as previously determined from Voyager 2 observations, we arrive at a new estimate of Uranus's average heat flux budget of P_out/P_in = 1.15 pm 0.06, finding considerable variation with time due to Uranus's significant orbital eccentricity of 0.046. This leads the flux budget to vary from P_out/P_in = 1.03 near perihelion, to 1.24 near aphelion. We conclude that although P_out/P_in is considerably smaller than for the other giant planets, Uranus is not in thermal equilibrium with the Sun. 5 authors · Feb 26, 2025
- Coupled BEM-FEM for the convected Helmholtz equation with non-uniform flow in a bounded domain We consider the convected Helmholtz equation modeling linear acoustic propagation at a fixed frequency in a subsonic flow around a scattering object. The flow is supposed to be uniform in the exterior domain far from the object, and potential in the interior domain close to the object. Our key idea is the reformulation of the original problem using the Prandtl--Glauert transformation on the whole flow domain, yielding (i) the classical Helmholtz equation in the exterior domain and (ii) an anisotropic diffusive PDE with skew-symmetric first-order perturbation in the interior domain such that its transmission condition at the coupling boundary naturally fits the Neumann condition from the classical Helmholtz equation. Then, efficient off-the-shelf tools can be used to perform the BEM-FEM coupling, leading to two novel variational formulations for the convected Helmholtz equation. The first formulation involves one surface unknown and can be affected by resonant frequencies, while the second formulation avoids resonant frequencies and involves two surface unknowns. Numerical simulations are presented to compare the two formulations. 3 authors · Mar 27, 2013
- Incomplete RG: Hawking-Page transition, C-theorem and relevant scalar deformations of global AdS We discuss relevant scalar deformations of a holographic theory with a compact boundary. An example of such a theory would be the global AdS_4 with its spatially compact boundary S^2. To introduce a relevant deformation, we choose to turn on a time-independent and spatially homogeneous non-normalizable scalar operator with m^2 = -2. The finite size of a compact boundary cuts down the RG flow at a finite length scale leading to an incomplete RG flow to IR. We discuss a version of {\it incomplete} C-theorem and an {\it incomplete} attractor like mechanism. We discuss the implication of our results for entanglement entropy and geometric quantities like scalar curvature, volume and mass scale of fundamental excitation of the how these quantities increase or decrease (often monotonically) with the strength of the deformation. Thermal physics of a holographic theory defined on a compact boundary is more interesting than its non-compact counterpart. It is well known that with a compact boundary, there is a possibility of a first order Hawking-Page transition dual to a de-confinement phase transition. From a gravity perspective, a relevant deformation dumps negative energy inside the bulk, increasing the effective cosmological constant (Lambda) of the AdS. Dumping more negative energy in the bulk would make the HP transition harder and the corresponding HP transition temperature would increase. However, we have found the size of the BH at the transition temperature decreases. 3 authors · Dec 14, 2021
1 Boundary Graph Neural Networks for 3D Simulations The abundance of data has given machine learning considerable momentum in natural sciences and engineering, though modeling of physical processes is often difficult. A particularly tough problem is the efficient representation of geometric boundaries. Triangularized geometric boundaries are well understood and ubiquitous in engineering applications. However, it is notoriously difficult to integrate them into machine learning approaches due to their heterogeneity with respect to size and orientation. In this work, we introduce an effective theory to model particle-boundary interactions, which leads to our new Boundary Graph Neural Networks (BGNNs) that dynamically modify graph structures to obey boundary conditions. The new BGNNs are tested on complex 3D granular flow processes of hoppers, rotating drums and mixers, which are all standard components of modern industrial machinery but still have complicated geometry. BGNNs are evaluated in terms of computational efficiency as well as prediction accuracy of particle flows and mixing entropies. BGNNs are able to accurately reproduce 3D granular flows within simulation uncertainties over hundreds of thousands of simulation timesteps. Most notably, in our experiments, particles stay within the geometric objects without using handcrafted conditions or restrictions. 6 authors · Jun 21, 2021
- Open-source Flux Transport (OFT). I. HipFT -- High-performance Flux Transport Global solar photospheric magnetic maps play a critical role in solar and heliospheric physics research. Routine magnetograph measurements of the field occur only along the Sun-Earth line, leaving the far-side of the Sun unobserved. Surface Flux Transport (SFT) models attempt to mitigate this by modeling the surface evolution of the field. While such models have long been established in the community (with several releasing public full-Sun maps), none are open source. The Open Source Flux Transport (OFT) model seeks to fill this gap by providing an open and user-extensible SFT model that also builds on the knowledge of previous models with updated numerical and data acquisition/assimilation methods along with additional user-defined features. In this first of a series of papers on OFT, we introduce its computational core: the High-performance Flux Transport (HipFT) code (github.com/predsci/hipft). HipFT implements advection, diffusion, and data assimilation in a modular design that supports a variety of flow models and options. It can compute multiple realizations in a single run across model parameters to create ensembles of maps for uncertainty quantification and is high-performance through the use of multi-CPU and multi-GPU parallelism. HipFT is designed to enable users to easily write extensions, enhancing its flexibility and adaptability. We describe HipFT's model features, validations of its numerical methods, performance of its parallel and GPU-accelerated code implementation, analysis/post-processing options, and example use cases. 8 authors · Jan 10, 2025
- Coherent Structures Governing Transport at Turbulent Interfaces In an experiment on a turbulent jet, we detect interfacial turbulent layers in a frame that moves, on average, along with the \tnti. This significantly prolongs the observation time of scalar and velocity structures and enables the measurement of two types of Lagrangian coherent structures. One structure, the finite-time Lyapunov field (FTLE), quantifies advective transport barriers of fluid parcels while the other structure highlights barriers of diffusive momentum transport. These two complementary structures depend on large-scale and small-scale motion and are therefore associated with the growth of the turbulent region through engulfment or nibbling, respectively. We detect the \tnti\ from cluster analysis, where we divide the measured scalar field into four clusters. Not only the \tnti\ can be found this way, but also the next, internal, turbulent-turbulent interface. Conditional averages show that these interfaces are correlated with barriers of advective and diffusive transport when the Lagrangian integration time is smaller than the integral time scale. Diffusive structures decorrelate faster since they have a smaller timescale. Conditional averages of these structures at internal turbulent-turbulent interfaces show the same pattern with a more pronounced jump at the interface indicative of a shear layer. This is quite an unexpected outcome, as the internal interface is now defined not by the presence or absence of vorticity, but by conditional vorticity corresponding to two uniform concentration zones. The long-time diffusive momentum flux along Lagrangian paths represents the growth of the turbulent flow into the irrotational domain, a direct demonstration of nibbling. The diffusive flux parallel to the \tnti\ appears to be concentrated in a diffusive superlayer whose width is comparable with the Taylor microscale, which is relatively invariant in time. 5 authors · Dec 17, 2024
- Multiphysics Bench: Benchmarking and Investigating Scientific Machine Learning for Multiphysics PDEs Solving partial differential equations (PDEs) with machine learning has recently attracted great attention, as PDEs are fundamental tools for modeling real-world systems that range from fundamental physical science to advanced engineering disciplines. Most real-world physical systems across various disciplines are actually involved in multiple coupled physical fields rather than a single field. However, previous machine learning studies mainly focused on solving single-field problems, but overlooked the importance and characteristics of multiphysics problems in real world. Multiphysics PDEs typically entail multiple strongly coupled variables, thereby introducing additional complexity and challenges, such as inter-field coupling. Both benchmarking and solving multiphysics problems with machine learning remain largely unexamined. To identify and address the emerging challenges in multiphysics problems, we mainly made three contributions in this work. First, we collect the first general multiphysics dataset, the Multiphysics Bench, that focuses on multiphysics PDE solving with machine learning. Multiphysics Bench is also the most comprehensive PDE dataset to date, featuring the broadest range of coupling types, the greatest diversity of PDE formulations, and the largest dataset scale. Second, we conduct the first systematic investigation on multiple representative learning-based PDE solvers, such as PINNs, FNO, DeepONet, and DiffusionPDE solvers, on multiphysics problems. Unfortunately, naively applying these existing solvers usually show very poor performance for solving multiphysics. Third, through extensive experiments and discussions, we report multiple insights and a bag of useful tricks for solving multiphysics with machine learning, motivating future directions in the study and simulation of complex, coupled physical systems. 5 authors · May 23, 2025
- BENO: Boundary-embedded Neural Operators for Elliptic PDEs Elliptic partial differential equations (PDEs) are a major class of time-independent PDEs that play a key role in many scientific and engineering domains such as fluid dynamics, plasma physics, and solid mechanics. Recently, neural operators have emerged as a promising technique to solve elliptic PDEs more efficiently by directly mapping the input to solutions. However, existing networks typically cannot handle complex geometries and inhomogeneous boundary values present in the real world. Here we introduce Boundary-Embedded Neural Operators (BENO), a novel neural operator architecture that embeds the complex geometries and inhomogeneous boundary values into the solving of elliptic PDEs. Inspired by classical Green's function, BENO consists of two branches of Graph Neural Networks (GNNs) for interior source term and boundary values, respectively. Furthermore, a Transformer encoder maps the global boundary geometry into a latent vector which influences each message passing layer of the GNNs. We test our model extensively in elliptic PDEs with various boundary conditions. We show that all existing baseline methods fail to learn the solution operator. In contrast, our model, endowed with boundary-embedded architecture, outperforms state-of-the-art neural operators and strong baselines by an average of 60.96\%. Our source code can be found https://github.com/AI4Science-WestlakeU/beno.git. 5 authors · Jan 17, 2024
- Modeling formation and transport of clusters at high temperature and pressure gradients by implying partial chemical equilibrium A theoretical approach to describing transport of an entire ensemble of clusters with different sizes as a single species in gas has been developed. The major assumption is an existence of local partial chemical equilibrium between the clusters. It is shown that thermal diffusion emerges in the collective description as a significant factor even if it is negligible when transport of the original molecular species is considered. Analytical expressions for the effective diffusion and thermal diffusion coefficients at temperature, pressure, and chemical composition gradients have been derived. The theory has been applied to a technology of H2S conversion in a centrifugal plasma-chemical reactor and has made it possible to account for sulfur clusters in numerical process modeling. 2 authors · Oct 24, 2025
1 Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks Physics-informed neural networks (PINNs) leverage neural-networks to find the solutions of partial differential equation (PDE)-constrained optimization problems with initial conditions and boundary conditions as soft constraints. These soft constraints are often considered to be the sources of the complexity in the training phase of PINNs. Here, we demonstrate that the challenge of training (i) persists even when the boundary conditions are strictly enforced, and (ii) is closely related to the Kolmogorov n-width associated with problems demonstrating transport, convection, traveling waves, or moving fronts. Given this realization, we describe the mechanism underlying the training schemes such as those used in eXtended PINNs (XPINN), curriculum regularization, and sequence-to-sequence learning. For an important category of PDEs, i.e., governed by non-linear convection-diffusion equation, we propose reformulating PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed solution. A parallel architecture with two branches is proposed. One branch solves for the state variables on the characteristics, and the second branch solves for the low-dimensional characteristics curves. The proposed architecture conforms to the causality innate to the convection, and leverages the direction of travel of the information in the domain. Finally, we demonstrate that the loss landscapes of LPINNs are less sensitive to the so-called "complexity" of the problems, compared to those in the traditional PINNs in the Eulerian framework. 3 authors · May 5, 2022
- On the Existence of Solution of Conservation Law with Moving Bottleneck and Discontinuity in FLux In this paper, a PDE-ODE model with discontinuity in the flux as well as a flux constraint is analyzed. A modified Riemann solution is proposed and the existence of a weak solution to the Cauchy problem is rigorously investigated using the wavefront tracking scheme. 2 authors · Sep 30, 2023
- Modeling the cooldown of cryocooler conduction-cooled devices Cryocooler conduction cooled devices can experience significant cooldown time due to lower available cooling capacity compares to convection cooled devices. Therefore, the cooldown time is an important design parameter for conduction cooled devices. This article introduces a framework developed in Python for calculating the cooldown profiles and cooldown time of cryocooler conduction-cooled devices such as superconducting magnets and accelerator cavities. The cooldown time estimation problem is essentially a system of ordinary first-order differential equations comprising the material properties (temperature dependent thermal conductivity and specific heat capacity) of the components intertwined with the prevailing heat transfer channels (conduction, radiation, and heat flow across pressed contacts) and the cryocooler capacity. The formulation of this ODE system is first presented. This ODE system is then solved using the in-built Python library odeint. A case study is presented comprising a small cryocooler conduction-cooled copper stabilized niobium-titanium magnet. The case study is supplemented with the Python script enabling the reader to simply tweak the device design parameters and optimize the design from the point of view of slow/fast cooldown. 1 authors · Oct 14, 2022
- Reflected Schrödinger Bridge for Constrained Generative Modeling Diffusion models have become the go-to method for large-scale generative models in real-world applications. These applications often involve data distributions confined within bounded domains, typically requiring ad-hoc thresholding techniques for boundary enforcement. Reflected diffusion models (Lou23) aim to enhance generalizability by generating the data distribution through a backward process governed by reflected Brownian motion. However, reflected diffusion models may not easily adapt to diverse domains without the derivation of proper diffeomorphic mappings and do not guarantee optimal transport properties. To overcome these limitations, we introduce the Reflected Schrodinger Bridge algorithm: an entropy-regularized optimal transport approach tailored for generating data within diverse bounded domains. We derive elegant reflected forward-backward stochastic differential equations with Neumann and Robin boundary conditions, extend divergence-based likelihood training to bounded domains, and explore natural connections to entropic optimal transport for the study of approximate linear convergence - a valuable insight for practical training. Our algorithm yields robust generative modeling in diverse domains, and its scalability is demonstrated in real-world constrained generative modeling through standard image benchmarks. 6 authors · Jan 6, 2024