|
|
import os |
|
|
import cv2 |
|
|
import math |
|
|
import copy |
|
|
import torch |
|
|
import glob |
|
|
import shutil |
|
|
import pickle |
|
|
import argparse |
|
|
import numpy as np |
|
|
import subprocess |
|
|
from tqdm import tqdm |
|
|
from omegaconf import OmegaConf |
|
|
from transformers import WhisperModel |
|
|
import sys |
|
|
|
|
|
from musetalk.utils.blending import get_image |
|
|
from musetalk.utils.face_parsing import FaceParsing |
|
|
from musetalk.utils.audio_processor import AudioProcessor |
|
|
from musetalk.utils.utils import get_file_type, get_video_fps, datagen, load_all_model |
|
|
from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs, coord_placeholder |
|
|
|
|
|
def fast_check_ffmpeg(): |
|
|
try: |
|
|
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True) |
|
|
return True |
|
|
except: |
|
|
return False |
|
|
|
|
|
@torch.no_grad() |
|
|
def main(args): |
|
|
|
|
|
if not fast_check_ffmpeg(): |
|
|
print("Adding ffmpeg to PATH") |
|
|
|
|
|
path_separator = ';' if sys.platform == 'win32' else ':' |
|
|
os.environ["PATH"] = f"{args.ffmpeg_path}{path_separator}{os.environ['PATH']}" |
|
|
if not fast_check_ffmpeg(): |
|
|
print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed") |
|
|
|
|
|
|
|
|
device = torch.device(f"cuda:{args.gpu_id}" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
vae, unet, pe = load_all_model( |
|
|
unet_model_path=args.unet_model_path, |
|
|
vae_type=args.vae_type, |
|
|
unet_config=args.unet_config, |
|
|
device=device |
|
|
) |
|
|
timesteps = torch.tensor([0], device=device) |
|
|
|
|
|
|
|
|
if args.use_float16: |
|
|
pe = pe.half() |
|
|
vae.vae = vae.vae.half() |
|
|
unet.model = unet.model.half() |
|
|
|
|
|
|
|
|
pe = pe.to(device) |
|
|
vae.vae = vae.vae.to(device) |
|
|
unet.model = unet.model.to(device) |
|
|
|
|
|
|
|
|
audio_processor = AudioProcessor(feature_extractor_path=args.whisper_dir) |
|
|
weight_dtype = unet.model.dtype |
|
|
whisper = WhisperModel.from_pretrained(args.whisper_dir) |
|
|
whisper = whisper.to(device=device, dtype=weight_dtype).eval() |
|
|
whisper.requires_grad_(False) |
|
|
|
|
|
|
|
|
if args.version == "v15": |
|
|
fp = FaceParsing( |
|
|
left_cheek_width=args.left_cheek_width, |
|
|
right_cheek_width=args.right_cheek_width |
|
|
) |
|
|
else: |
|
|
fp = FaceParsing() |
|
|
|
|
|
|
|
|
inference_config = OmegaConf.load(args.inference_config) |
|
|
print("Loaded inference config:", inference_config) |
|
|
|
|
|
|
|
|
for task_id in inference_config: |
|
|
try: |
|
|
|
|
|
video_path = inference_config[task_id]["video_path"] |
|
|
audio_path = inference_config[task_id]["audio_path"] |
|
|
if "result_name" in inference_config[task_id]: |
|
|
args.output_vid_name = inference_config[task_id]["result_name"] |
|
|
|
|
|
|
|
|
if args.version == "v15": |
|
|
bbox_shift = 0 |
|
|
else: |
|
|
bbox_shift = inference_config[task_id].get("bbox_shift", args.bbox_shift) |
|
|
|
|
|
|
|
|
input_basename = os.path.basename(video_path).split('.')[0] |
|
|
audio_basename = os.path.basename(audio_path).split('.')[0] |
|
|
output_basename = f"{input_basename}_{audio_basename}" |
|
|
|
|
|
|
|
|
temp_dir = os.path.join(args.result_dir, f"{args.version}") |
|
|
os.makedirs(temp_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
result_img_save_path = os.path.join(temp_dir, output_basename) |
|
|
crop_coord_save_path = os.path.join(args.result_dir, "../", input_basename+".pkl") |
|
|
os.makedirs(result_img_save_path, exist_ok=True) |
|
|
|
|
|
|
|
|
if args.output_vid_name is None: |
|
|
output_vid_name = os.path.join(temp_dir, output_basename + ".mp4") |
|
|
else: |
|
|
output_vid_name = os.path.join(temp_dir, args.output_vid_name) |
|
|
output_vid_name_concat = os.path.join(temp_dir, output_basename + "_concat.mp4") |
|
|
|
|
|
|
|
|
if get_file_type(video_path) == "video": |
|
|
save_dir_full = os.path.join(temp_dir, input_basename) |
|
|
os.makedirs(save_dir_full, exist_ok=True) |
|
|
cmd = f"ffmpeg -v fatal -i {video_path} -vf fps={args.fps} -start_number 0 {save_dir_full}/%08d.png" |
|
|
os.system(cmd) |
|
|
input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]'))) |
|
|
fps = args.fps |
|
|
elif get_file_type(video_path) == "image": |
|
|
input_img_list = [video_path] |
|
|
fps = args.fps |
|
|
elif os.path.isdir(video_path): |
|
|
input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]')) |
|
|
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) |
|
|
fps = args.fps |
|
|
else: |
|
|
raise ValueError(f"{video_path} should be a video file, an image file or a directory of images") |
|
|
|
|
|
|
|
|
whisper_input_features, librosa_length = audio_processor.get_audio_feature(audio_path) |
|
|
whisper_chunks = audio_processor.get_whisper_chunk( |
|
|
whisper_input_features, |
|
|
device, |
|
|
weight_dtype, |
|
|
whisper, |
|
|
librosa_length, |
|
|
fps=fps, |
|
|
audio_padding_length_left=args.audio_padding_length_left, |
|
|
audio_padding_length_right=args.audio_padding_length_right, |
|
|
) |
|
|
|
|
|
|
|
|
if os.path.exists(crop_coord_save_path) and args.use_saved_coord: |
|
|
print("Using saved coordinates") |
|
|
with open(crop_coord_save_path, 'rb') as f: |
|
|
coord_list = pickle.load(f) |
|
|
frame_list = read_imgs(input_img_list) |
|
|
else: |
|
|
print("Extracting landmarks... time-consuming operation") |
|
|
coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift) |
|
|
with open(crop_coord_save_path, 'wb') as f: |
|
|
pickle.dump(coord_list, f) |
|
|
|
|
|
print(f"Number of frames: {len(frame_list)}") |
|
|
|
|
|
|
|
|
input_latent_list = [] |
|
|
for bbox, frame in zip(coord_list, frame_list): |
|
|
if bbox == coord_placeholder: |
|
|
continue |
|
|
x1, y1, x2, y2 = bbox |
|
|
if args.version == "v15": |
|
|
y2 = y2 + args.extra_margin |
|
|
y2 = min(y2, frame.shape[0]) |
|
|
crop_frame = frame[y1:y2, x1:x2] |
|
|
crop_frame = cv2.resize(crop_frame, (256,256), interpolation=cv2.INTER_LANCZOS4) |
|
|
latents = vae.get_latents_for_unet(crop_frame) |
|
|
input_latent_list.append(latents) |
|
|
|
|
|
|
|
|
frame_list_cycle = frame_list + frame_list[::-1] |
|
|
coord_list_cycle = coord_list + coord_list[::-1] |
|
|
input_latent_list_cycle = input_latent_list + input_latent_list[::-1] |
|
|
|
|
|
|
|
|
print("Starting inference") |
|
|
video_num = len(whisper_chunks) |
|
|
batch_size = args.batch_size |
|
|
gen = datagen( |
|
|
whisper_chunks=whisper_chunks, |
|
|
vae_encode_latents=input_latent_list_cycle, |
|
|
batch_size=batch_size, |
|
|
delay_frame=0, |
|
|
device=device, |
|
|
) |
|
|
|
|
|
res_frame_list = [] |
|
|
total = int(np.ceil(float(video_num) / batch_size)) |
|
|
|
|
|
|
|
|
for i, (whisper_batch, latent_batch) in enumerate(tqdm(gen, total=total)): |
|
|
audio_feature_batch = pe(whisper_batch) |
|
|
latent_batch = latent_batch.to(dtype=unet.model.dtype) |
|
|
|
|
|
pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample |
|
|
recon = vae.decode_latents(pred_latents) |
|
|
for res_frame in recon: |
|
|
res_frame_list.append(res_frame) |
|
|
|
|
|
|
|
|
print("Padding generated images to original video size") |
|
|
for i, res_frame in enumerate(tqdm(res_frame_list)): |
|
|
bbox = coord_list_cycle[i%(len(coord_list_cycle))] |
|
|
ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))]) |
|
|
x1, y1, x2, y2 = bbox |
|
|
if args.version == "v15": |
|
|
y2 = y2 + args.extra_margin |
|
|
y2 = min(y2, frame.shape[0]) |
|
|
try: |
|
|
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2-x1, y2-y1)) |
|
|
except: |
|
|
continue |
|
|
|
|
|
|
|
|
if args.version == "v15": |
|
|
combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], mode=args.parsing_mode, fp=fp) |
|
|
else: |
|
|
combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], fp=fp) |
|
|
cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png", combine_frame) |
|
|
|
|
|
|
|
|
temp_vid_path = f"{temp_dir}/temp_{input_basename}_{audio_basename}.mp4" |
|
|
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=yuv420p -crf 18 {temp_vid_path}" |
|
|
print("Video generation command:", cmd_img2video) |
|
|
os.system(cmd_img2video) |
|
|
|
|
|
cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {temp_vid_path} {output_vid_name}" |
|
|
print("Audio combination command:", cmd_combine_audio) |
|
|
os.system(cmd_combine_audio) |
|
|
|
|
|
|
|
|
shutil.rmtree(result_img_save_path) |
|
|
os.remove(temp_vid_path) |
|
|
|
|
|
shutil.rmtree(save_dir_full) |
|
|
if not args.saved_coord: |
|
|
os.remove(crop_coord_save_path) |
|
|
|
|
|
print(f"Results saved to {output_vid_name}") |
|
|
except Exception as e: |
|
|
print("Error occurred during processing:", e) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("--ffmpeg_path", type=str, default="./ffmpeg-4.4-amd64-static/", help="Path to ffmpeg executable") |
|
|
parser.add_argument("--gpu_id", type=int, default=0, help="GPU ID to use") |
|
|
parser.add_argument("--vae_type", type=str, default="sd-vae", help="Type of VAE model") |
|
|
parser.add_argument("--unet_config", type=str, default="./models/musetalk/config.json", help="Path to UNet configuration file") |
|
|
parser.add_argument("--unet_model_path", type=str, default="./models/musetalkV15/unet.pth", help="Path to UNet model weights") |
|
|
parser.add_argument("--whisper_dir", type=str, default="./models/whisper", help="Directory containing Whisper model") |
|
|
parser.add_argument("--inference_config", type=str, default="configs/inference/test_img.yaml", help="Path to inference configuration file") |
|
|
parser.add_argument("--bbox_shift", type=int, default=0, help="Bounding box shift value") |
|
|
parser.add_argument("--result_dir", default='./results', help="Directory for output results") |
|
|
parser.add_argument("--extra_margin", type=int, default=10, help="Extra margin for face cropping") |
|
|
parser.add_argument("--fps", type=int, default=25, help="Video frames per second") |
|
|
parser.add_argument("--audio_padding_length_left", type=int, default=2, help="Left padding length for audio") |
|
|
parser.add_argument("--audio_padding_length_right", type=int, default=2, help="Right padding length for audio") |
|
|
parser.add_argument("--batch_size", type=int, default=8, help="Batch size for inference") |
|
|
parser.add_argument("--output_vid_name", type=str, default=None, help="Name of output video file") |
|
|
parser.add_argument("--use_saved_coord", action="store_true", help='Use saved coordinates to save time') |
|
|
parser.add_argument("--saved_coord", action="store_true", help='Save coordinates for future use') |
|
|
parser.add_argument("--use_float16", action="store_true", help="Use float16 for faster inference") |
|
|
parser.add_argument("--parsing_mode", default='jaw', help="Face blending parsing mode") |
|
|
parser.add_argument("--left_cheek_width", type=int, default=90, help="Width of left cheek region") |
|
|
parser.add_argument("--right_cheek_width", type=int, default=90, help="Width of right cheek region") |
|
|
parser.add_argument("--version", type=str, default="v15", choices=["v1", "v15"], help="Model version to use") |
|
|
args = parser.parse_args() |
|
|
main(args) |
|
|
|