MuseTalk / musetalk_api_server_v2.py
marcosremar2's picture
fix: correct facial alignment issues and add API server
af11910
"""
MuseTalk HTTP API Server v2
Optimized for repeated use of the same avatar.
"""
import os
import cv2
import copy
import torch
import glob
import shutil
import pickle
import numpy as np
import subprocess
import tempfile
import hashlib
import time
from pathlib import Path
from typing import Optional
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, BackgroundTasks
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from tqdm import tqdm
from omegaconf import OmegaConf
from transformers import WhisperModel
import uvicorn
# MuseTalk imports
from musetalk.utils.blending import get_image
from musetalk.utils.face_parsing import FaceParsing
from musetalk.utils.audio_processor import AudioProcessor
from musetalk.utils.utils import get_file_type, datagen, load_all_model
from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs, coord_placeholder
class MuseTalkServerV2:
"""Server optimized for pre-processed avatars."""
def __init__(self):
self.device = None
self.vae = None
self.unet = None
self.pe = None
self.whisper = None
self.audio_processor = None
self.fp = None
self.timesteps = None
self.weight_dtype = None
self.is_loaded = False
# Avatar cache (in-memory)
self.loaded_avatars = {}
self.avatar_dir = Path("./avatars")
# Config
self.fps = 25
self.batch_size = 8
self.use_float16 = True
self.version = "v15"
self.extra_margin = 10
self.parsing_mode = "jaw"
self.left_cheek_width = 90
self.right_cheek_width = 90
self.audio_padding_left = 2
self.audio_padding_right = 2
def load_models(
self,
gpu_id: int = 0,
unet_model_path: str = "./models/musetalkV15/unet.pth",
unet_config: str = "./models/musetalk/config.json",
vae_type: str = "sd-vae",
whisper_dir: str = "./models/whisper",
use_float16: bool = True,
version: str = "v15"
):
if self.is_loaded:
print("Models already loaded!")
return
print("=" * 50)
print("Loading MuseTalk models into GPU memory...")
print("=" * 50)
start_time = time.time()
self.device = torch.device(f"cuda:{gpu_id}" if torch.cuda.is_available() else "cpu")
print(f"Using device: {self.device}")
print("Loading VAE, UNet, PE...")
self.vae, self.unet, self.pe = load_all_model(
unet_model_path=unet_model_path,
vae_type=vae_type,
unet_config=unet_config,
device=self.device
)
self.timesteps = torch.tensor([0], device=self.device)
self.use_float16 = use_float16
if use_float16:
print("Converting to float16...")
self.pe = self.pe.half()
self.vae.vae = self.vae.vae.half()
self.unet.model = self.unet.model.half()
self.pe = self.pe.to(self.device)
self.vae.vae = self.vae.vae.to(self.device)
self.unet.model = self.unet.model.to(self.device)
print("Loading Whisper model...")
self.audio_processor = AudioProcessor(feature_extractor_path=whisper_dir)
self.weight_dtype = self.unet.model.dtype
self.whisper = WhisperModel.from_pretrained(whisper_dir)
self.whisper = self.whisper.to(device=self.device, dtype=self.weight_dtype).eval()
self.whisper.requires_grad_(False)
self.version = version
if version == "v15":
self.fp = FaceParsing(
left_cheek_width=self.left_cheek_width,
right_cheek_width=self.right_cheek_width
)
else:
self.fp = FaceParsing()
self.is_loaded = True
print(f"Models loaded in {time.time() - start_time:.2f}s")
print("=" * 50)
def load_avatar(self, avatar_name: str) -> dict:
"""Load a preprocessed avatar into memory."""
if avatar_name in self.loaded_avatars:
return self.loaded_avatars[avatar_name]
avatar_path = self.avatar_dir / avatar_name
if not avatar_path.exists():
raise FileNotFoundError(f"Avatar not found: {avatar_name}")
print(f"Loading avatar '{avatar_name}' into memory...")
t0 = time.time()
avatar_data = {}
# Load metadata
with open(avatar_path / "metadata.pkl", 'rb') as f:
avatar_data['metadata'] = pickle.load(f)
# Load coords
with open(avatar_path / "coords.pkl", 'rb') as f:
avatar_data['coord_list'] = pickle.load(f)
# Load frames
with open(avatar_path / "frames.pkl", 'rb') as f:
avatar_data['frame_list'] = pickle.load(f)
# Load latents and convert to GPU tensors
with open(avatar_path / "latents.pkl", 'rb') as f:
latents_np = pickle.load(f)
avatar_data['latent_list'] = [
torch.from_numpy(l).to(self.device) for l in latents_np
]
# Load crop info
with open(avatar_path / "crop_info.pkl", 'rb') as f:
avatar_data['crop_info'] = pickle.load(f)
# Load parsing data (optional)
parsing_path = avatar_path / "parsing.pkl"
if parsing_path.exists():
with open(parsing_path, 'rb') as f:
avatar_data['parsing_data'] = pickle.load(f)
self.loaded_avatars[avatar_name] = avatar_data
print(f"Avatar loaded in {time.time() - t0:.2f}s")
return avatar_data
def unload_avatar(self, avatar_name: str):
"""Unload avatar from memory."""
if avatar_name in self.loaded_avatars:
del self.loaded_avatars[avatar_name]
torch.cuda.empty_cache()
@torch.no_grad()
def generate_with_avatar(
self,
avatar_name: str,
audio_path: str,
output_path: str,
fps: Optional[int] = None
) -> dict:
"""Generate video using pre-processed avatar. Much faster!"""
if not self.is_loaded:
raise RuntimeError("Models not loaded!")
fps = fps or self.fps
timings = {}
total_start = time.time()
# Load avatar (cached in memory)
t0 = time.time()
avatar = self.load_avatar(avatar_name)
timings["avatar_load"] = time.time() - t0
coord_list = avatar['coord_list']
frame_list = avatar['frame_list']
input_latent_list = avatar['latent_list']
temp_dir = tempfile.mkdtemp()
try:
# 1. Extract audio features (only audio-dependent step that's heavy)
t0 = time.time()
whisper_input_features, librosa_length = self.audio_processor.get_audio_feature(audio_path)
whisper_chunks = self.audio_processor.get_whisper_chunk(
whisper_input_features,
self.device,
self.weight_dtype,
self.whisper,
librosa_length,
fps=fps,
audio_padding_length_left=self.audio_padding_left,
audio_padding_length_right=self.audio_padding_right,
)
timings["whisper_features"] = time.time() - t0
# 2. Prepare cycled lists
frame_list_cycle = frame_list + frame_list[::-1]
coord_list_cycle = coord_list + coord_list[::-1]
input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
# 3. UNet inference
t0 = time.time()
gen = datagen(
whisper_chunks=whisper_chunks,
vae_encode_latents=input_latent_list_cycle,
batch_size=self.batch_size,
delay_frame=0,
device=self.device,
)
res_frame_list = []
for whisper_batch, latent_batch in gen:
audio_feature_batch = self.pe(whisper_batch)
latent_batch = latent_batch.to(dtype=self.unet.model.dtype)
pred_latents = self.unet.model(
latent_batch, self.timesteps,
encoder_hidden_states=audio_feature_batch
).sample
recon = self.vae.decode_latents(pred_latents)
for res_frame in recon:
res_frame_list.append(res_frame)
timings["unet_inference"] = time.time() - t0
# 4. Face blending
t0 = time.time()
result_img_path = os.path.join(temp_dir, "results")
os.makedirs(result_img_path, exist_ok=True)
for i, res_frame in enumerate(res_frame_list):
bbox = coord_list_cycle[i % len(coord_list_cycle)]
ori_frame = copy.deepcopy(frame_list_cycle[i % len(frame_list_cycle)])
x1, y1, x2, y2 = bbox
if self.version == "v15":
y2 = y2 + self.extra_margin
y2 = min(y2, ori_frame.shape[0])
try:
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2-x1, y2-y1))
except:
continue
if self.version == "v15":
combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2],
mode=self.parsing_mode, fp=self.fp)
else:
combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], fp=self.fp)
cv2.imwrite(f"{result_img_path}/{str(i).zfill(8)}.png", combine_frame)
timings["face_blending"] = time.time() - t0
# 5. Encode video
t0 = time.time()
temp_vid = os.path.join(temp_dir, "temp.mp4")
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {result_img_path}/%08d.png -vcodec libx264 -vf format=yuv420p -crf 18 {temp_vid}"
os.system(cmd_img2video)
cmd_combine = f"ffmpeg -y -v warning -i {audio_path} -i {temp_vid} {output_path}"
os.system(cmd_combine)
timings["video_encoding"] = time.time() - t0
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
timings["total"] = time.time() - total_start
timings["frames_generated"] = len(res_frame_list)
return timings
# Global server instance
server = MuseTalkServerV2()
# FastAPI app
app = FastAPI(
title="MuseTalk API v2",
description="Optimized API for repeated avatar usage",
version="2.0.0"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.on_event("startup")
async def startup_event():
server.load_models()
@app.get("/health")
async def health_check():
return {
"status": "ok" if server.is_loaded else "loading",
"models_loaded": server.is_loaded,
"device": str(server.device) if server.device else None,
"loaded_avatars": list(server.loaded_avatars.keys())
}
@app.get("/avatars")
async def list_avatars():
"""List all available preprocessed avatars."""
avatars = []
for p in server.avatar_dir.iterdir():
if p.is_dir() and (p / "metadata.pkl").exists():
with open(p / "metadata.pkl", 'rb') as f:
metadata = pickle.load(f)
metadata['loaded'] = p.name in server.loaded_avatars
avatars.append(metadata)
return {"avatars": avatars}
@app.post("/avatars/{avatar_name}/load")
async def load_avatar(avatar_name: str):
"""Pre-load an avatar into GPU memory."""
try:
server.load_avatar(avatar_name)
return {"status": "loaded", "avatar_name": avatar_name}
except FileNotFoundError as e:
raise HTTPException(status_code=404, detail=str(e))
@app.post("/avatars/{avatar_name}/unload")
async def unload_avatar(avatar_name: str):
"""Unload an avatar from memory."""
server.unload_avatar(avatar_name)
return {"status": "unloaded", "avatar_name": avatar_name}
class GenerateWithAvatarRequest(BaseModel):
avatar_name: str
audio_path: str
output_path: str
fps: Optional[int] = 25
@app.post("/generate/avatar")
async def generate_with_avatar(request: GenerateWithAvatarRequest):
"""Generate video using pre-processed avatar. FAST!"""
if not server.is_loaded:
raise HTTPException(status_code=503, detail="Models not loaded")
if not os.path.exists(request.audio_path):
raise HTTPException(status_code=404, detail=f"Audio not found: {request.audio_path}")
try:
timings = server.generate_with_avatar(
avatar_name=request.avatar_name,
audio_path=request.audio_path,
output_path=request.output_path,
fps=request.fps
)
return {
"status": "success",
"output_path": request.output_path,
"timings": timings
}
except FileNotFoundError as e:
raise HTTPException(status_code=404, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/generate/avatar/upload")
async def generate_with_avatar_upload(
avatar_name: str = Form(...),
audio: UploadFile = File(...),
fps: int = Form(25)
):
"""Generate video from uploaded audio using pre-processed avatar."""
if not server.is_loaded:
raise HTTPException(status_code=503, detail="Models not loaded")
temp_dir = tempfile.mkdtemp()
try:
audio_path = os.path.join(temp_dir, audio.filename)
output_path = os.path.join(temp_dir, "output.mp4")
with open(audio_path, "wb") as f:
f.write(await audio.read())
timings = server.generate_with_avatar(
avatar_name=avatar_name,
audio_path=audio_path,
output_path=output_path,
fps=fps
)
return FileResponse(
output_path,
media_type="video/mp4",
filename="result.mp4",
headers={"X-Timings": str(timings)}
)
except Exception as e:
shutil.rmtree(temp_dir, ignore_errors=True)
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=8000)
args = parser.parse_args()
uvicorn.run(app, host=args.host, port=args.port)