File size: 22,812 Bytes
af11910 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
"""
MuseTalk HTTP API Server v3
Ultra-optimized with:
1. GPU-accelerated face blending (parallel processing)
2. NVENC hardware video encoding
3. Batch audio processing
"""
import os
import cv2
import copy
import torch
import glob
import shutil
import pickle
import numpy as np
import subprocess
import tempfile
import hashlib
import time
import asyncio
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
from pathlib import Path
from typing import Optional, List
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, BackgroundTasks
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from tqdm import tqdm
from omegaconf import OmegaConf
from transformers import WhisperModel
import uvicorn
import multiprocessing as mp
# MuseTalk imports
from musetalk.utils.blending import get_image
from musetalk.utils.face_parsing import FaceParsing
from musetalk.utils.audio_processor import AudioProcessor
from musetalk.utils.utils import get_file_type, datagen, load_all_model
from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs, coord_placeholder
def blend_single_frame(args):
"""Worker function for parallel face blending."""
i, res_frame, bbox, ori_frame, extra_margin, version, parsing_mode, fp_config = args
x1, y1, x2, y2 = bbox
if version == "v15":
y2 = y2 + extra_margin
y2 = min(y2, ori_frame.shape[0])
try:
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2-x1, y2-y1))
except:
return i, None
# Create FaceParsing instance for this worker
fp = FaceParsing(
left_cheek_width=fp_config['left_cheek_width'],
right_cheek_width=fp_config['right_cheek_width']
)
if version == "v15":
combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2],
mode=parsing_mode, fp=fp)
else:
combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], fp=fp)
return i, combine_frame
class MuseTalkServerV3:
"""Ultra-optimized server."""
def __init__(self):
self.device = None
self.vae = None
self.unet = None
self.pe = None
self.whisper = None
self.audio_processor = None
self.fp = None
self.timesteps = None
self.weight_dtype = None
self.is_loaded = False
# Avatar cache
self.loaded_avatars = {}
self.avatar_dir = Path("./avatars")
# Config
self.fps = 25
self.batch_size = 8
self.use_float16 = True
self.version = "v15"
self.extra_margin = 10
self.parsing_mode = "jaw"
self.left_cheek_width = 90
self.right_cheek_width = 90
self.audio_padding_left = 2
self.audio_padding_right = 2
# Thread pool for parallel blending
self.num_workers = min(8, mp.cpu_count())
self.thread_pool = ThreadPoolExecutor(max_workers=self.num_workers)
# NVENC settings
self.use_nvenc = True
self.nvenc_preset = "p4" # p1(fastest) to p7(best quality)
self.crf = 23
def load_models(
self,
gpu_id: int = 0,
unet_model_path: str = "./models/musetalkV15/unet.pth",
unet_config: str = "./models/musetalk/config.json",
vae_type: str = "sd-vae",
whisper_dir: str = "./models/whisper",
use_float16: bool = True,
version: str = "v15"
):
if self.is_loaded:
print("Models already loaded!")
return
print("=" * 50)
print("Loading MuseTalk models (v3 Ultra-Optimized)...")
print("=" * 50)
start_time = time.time()
self.device = torch.device(f"cuda:{gpu_id}" if torch.cuda.is_available() else "cpu")
print(f"Using device: {self.device}")
print(f"Parallel workers: {self.num_workers}")
print(f"NVENC encoding: {self.use_nvenc}")
print("Loading VAE, UNet, PE...")
self.vae, self.unet, self.pe = load_all_model(
unet_model_path=unet_model_path,
vae_type=vae_type,
unet_config=unet_config,
device=self.device
)
self.timesteps = torch.tensor([0], device=self.device)
self.use_float16 = use_float16
if use_float16:
print("Converting to float16...")
self.pe = self.pe.half()
self.vae.vae = self.vae.vae.half()
self.unet.model = self.unet.model.half()
self.pe = self.pe.to(self.device)
self.vae.vae = self.vae.vae.to(self.device)
self.unet.model = self.unet.model.to(self.device)
print("Loading Whisper model...")
self.audio_processor = AudioProcessor(feature_extractor_path=whisper_dir)
self.weight_dtype = self.unet.model.dtype
self.whisper = WhisperModel.from_pretrained(whisper_dir)
self.whisper = self.whisper.to(device=self.device, dtype=self.weight_dtype).eval()
self.whisper.requires_grad_(False)
self.version = version
if version == "v15":
self.fp = FaceParsing(
left_cheek_width=self.left_cheek_width,
right_cheek_width=self.right_cheek_width
)
else:
self.fp = FaceParsing()
self.is_loaded = True
print(f"Models loaded in {time.time() - start_time:.2f}s")
print("=" * 50)
def load_avatar(self, avatar_name: str) -> dict:
if avatar_name in self.loaded_avatars:
return self.loaded_avatars[avatar_name]
avatar_path = self.avatar_dir / avatar_name
if not avatar_path.exists():
raise FileNotFoundError(f"Avatar not found: {avatar_name}")
print(f"Loading avatar '{avatar_name}' into memory...")
t0 = time.time()
avatar_data = {}
with open(avatar_path / "metadata.pkl", 'rb') as f:
avatar_data['metadata'] = pickle.load(f)
with open(avatar_path / "coords.pkl", 'rb') as f:
avatar_data['coord_list'] = pickle.load(f)
with open(avatar_path / "frames.pkl", 'rb') as f:
avatar_data['frame_list'] = pickle.load(f)
with open(avatar_path / "latents.pkl", 'rb') as f:
latents_np = pickle.load(f)
avatar_data['latent_list'] = [
torch.from_numpy(l).to(self.device) for l in latents_np
]
with open(avatar_path / "crop_info.pkl", 'rb') as f:
avatar_data['crop_info'] = pickle.load(f)
self.loaded_avatars[avatar_name] = avatar_data
print(f"Avatar loaded in {time.time() - t0:.2f}s")
return avatar_data
def unload_avatar(self, avatar_name: str):
if avatar_name in self.loaded_avatars:
del self.loaded_avatars[avatar_name]
torch.cuda.empty_cache()
def _encode_video_nvenc(self, frames_dir: str, audio_path: str, output_path: str, fps: int) -> float:
"""Encode video using NVENC hardware acceleration."""
t0 = time.time()
temp_vid = frames_dir.replace('/results', '/temp.mp4')
if self.use_nvenc:
# NVENC H.264 encoding (much faster)
cmd_img2video = (
f"ffmpeg -y -v warning -r {fps} -f image2 -i {frames_dir}/%08d.png "
f"-c:v h264_nvenc -preset {self.nvenc_preset} -cq {self.crf} "
f"-pix_fmt yuv420p {temp_vid}"
)
else:
# Fallback to CPU encoding
cmd_img2video = (
f"ffmpeg -y -v warning -r {fps} -f image2 -i {frames_dir}/%08d.png "
f"-vcodec libx264 -vf format=yuv420p -crf 18 {temp_vid}"
)
os.system(cmd_img2video)
# Add audio
cmd_combine = f"ffmpeg -y -v warning -i {audio_path} -i {temp_vid} -c:v copy -c:a aac {output_path}"
os.system(cmd_combine)
# Cleanup temp video
if os.path.exists(temp_vid):
os.remove(temp_vid)
return time.time() - t0
def _parallel_face_blending(self, res_frame_list, coord_list_cycle, frame_list_cycle, result_img_path) -> float:
"""Parallel face blending using thread pool."""
t0 = time.time()
fp_config = {
'left_cheek_width': self.left_cheek_width,
'right_cheek_width': self.right_cheek_width
}
# Prepare all tasks
tasks = []
for i, res_frame in enumerate(res_frame_list):
bbox = coord_list_cycle[i % len(coord_list_cycle)]
ori_frame = copy.deepcopy(frame_list_cycle[i % len(frame_list_cycle)])
tasks.append((
i, res_frame, bbox, ori_frame,
self.extra_margin, self.version, self.parsing_mode, fp_config
))
# Process in parallel
results = list(self.thread_pool.map(blend_single_frame, tasks))
# Sort and save results
results.sort(key=lambda x: x[0])
for i, combine_frame in results:
if combine_frame is not None:
cv2.imwrite(f"{result_img_path}/{str(i).zfill(8)}.png", combine_frame)
return time.time() - t0
@torch.no_grad()
def generate_with_avatar(
self,
avatar_name: str,
audio_path: str,
output_path: str,
fps: Optional[int] = None,
use_parallel_blending: bool = True
) -> dict:
"""Generate video using pre-processed avatar with all optimizations."""
if not self.is_loaded:
raise RuntimeError("Models not loaded!")
fps = fps or self.fps
timings = {}
total_start = time.time()
# Load avatar
t0 = time.time()
avatar = self.load_avatar(avatar_name)
timings["avatar_load"] = time.time() - t0
coord_list = avatar['coord_list']
frame_list = avatar['frame_list']
input_latent_list = avatar['latent_list']
temp_dir = tempfile.mkdtemp()
try:
# 1. Extract audio features
t0 = time.time()
whisper_input_features, librosa_length = self.audio_processor.get_audio_feature(audio_path)
whisper_chunks = self.audio_processor.get_whisper_chunk(
whisper_input_features,
self.device,
self.weight_dtype,
self.whisper,
librosa_length,
fps=fps,
audio_padding_length_left=self.audio_padding_left,
audio_padding_length_right=self.audio_padding_right,
)
timings["whisper_features"] = time.time() - t0
# 2. Prepare cycled lists
frame_list_cycle = frame_list + frame_list[::-1]
coord_list_cycle = coord_list + coord_list[::-1]
input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
# 3. UNet inference
t0 = time.time()
gen = datagen(
whisper_chunks=whisper_chunks,
vae_encode_latents=input_latent_list_cycle,
batch_size=self.batch_size,
delay_frame=0,
device=self.device,
)
res_frame_list = []
for whisper_batch, latent_batch in gen:
audio_feature_batch = self.pe(whisper_batch)
latent_batch = latent_batch.to(dtype=self.unet.model.dtype)
pred_latents = self.unet.model(
latent_batch, self.timesteps,
encoder_hidden_states=audio_feature_batch
).sample
recon = self.vae.decode_latents(pred_latents)
for res_frame in recon:
res_frame_list.append(res_frame)
timings["unet_inference"] = time.time() - t0
# 4. Face blending (parallel or sequential)
result_img_path = os.path.join(temp_dir, "results")
os.makedirs(result_img_path, exist_ok=True)
if use_parallel_blending:
timings["face_blending"] = self._parallel_face_blending(
res_frame_list, coord_list_cycle, frame_list_cycle, result_img_path
)
timings["blending_mode"] = "parallel"
else:
t0 = time.time()
for i, res_frame in enumerate(res_frame_list):
bbox = coord_list_cycle[i % len(coord_list_cycle)]
ori_frame = copy.deepcopy(frame_list_cycle[i % len(frame_list_cycle)])
x1, y1, x2, y2 = bbox
if self.version == "v15":
y2 = y2 + self.extra_margin
y2 = min(y2, ori_frame.shape[0])
try:
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2-x1, y2-y1))
except:
continue
if self.version == "v15":
combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2],
mode=self.parsing_mode, fp=self.fp)
else:
combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], fp=self.fp)
cv2.imwrite(f"{result_img_path}/{str(i).zfill(8)}.png", combine_frame)
timings["face_blending"] = time.time() - t0
timings["blending_mode"] = "sequential"
# 5. Video encoding (NVENC)
timings["video_encoding"] = self._encode_video_nvenc(
result_img_path, audio_path, output_path, fps
)
timings["encoding_mode"] = "nvenc" if self.use_nvenc else "cpu"
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
timings["total"] = time.time() - total_start
timings["frames_generated"] = len(res_frame_list)
return timings
@torch.no_grad()
def generate_batch(
self,
avatar_name: str,
audio_paths: List[str],
output_dir: str,
fps: Optional[int] = None
) -> dict:
"""Generate multiple videos from multiple audios efficiently."""
if not self.is_loaded:
raise RuntimeError("Models not loaded!")
fps = fps or self.fps
batch_timings = {"videos": [], "total": 0}
total_start = time.time()
# Load avatar once
t0 = time.time()
avatar = self.load_avatar(avatar_name)
batch_timings["avatar_load"] = time.time() - t0
coord_list = avatar['coord_list']
frame_list = avatar['frame_list']
input_latent_list = avatar['latent_list']
# Prepare cycled lists once
frame_list_cycle = frame_list + frame_list[::-1]
coord_list_cycle = coord_list + coord_list[::-1]
input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
os.makedirs(output_dir, exist_ok=True)
for idx, audio_path in enumerate(audio_paths):
video_start = time.time()
timings = {}
audio_name = Path(audio_path).stem
output_path = os.path.join(output_dir, f"{audio_name}.mp4")
temp_dir = tempfile.mkdtemp()
try:
# 1. Extract audio features
t0 = time.time()
whisper_input_features, librosa_length = self.audio_processor.get_audio_feature(audio_path)
whisper_chunks = self.audio_processor.get_whisper_chunk(
whisper_input_features,
self.device,
self.weight_dtype,
self.whisper,
librosa_length,
fps=fps,
audio_padding_length_left=self.audio_padding_left,
audio_padding_length_right=self.audio_padding_right,
)
timings["whisper_features"] = time.time() - t0
# 2. UNet inference
t0 = time.time()
gen = datagen(
whisper_chunks=whisper_chunks,
vae_encode_latents=input_latent_list_cycle,
batch_size=self.batch_size,
delay_frame=0,
device=self.device,
)
res_frame_list = []
for whisper_batch, latent_batch in gen:
audio_feature_batch = self.pe(whisper_batch)
latent_batch = latent_batch.to(dtype=self.unet.model.dtype)
pred_latents = self.unet.model(
latent_batch, self.timesteps,
encoder_hidden_states=audio_feature_batch
).sample
recon = self.vae.decode_latents(pred_latents)
for res_frame in recon:
res_frame_list.append(res_frame)
timings["unet_inference"] = time.time() - t0
# 3. Face blending (parallel)
result_img_path = os.path.join(temp_dir, "results")
os.makedirs(result_img_path, exist_ok=True)
timings["face_blending"] = self._parallel_face_blending(
res_frame_list, coord_list_cycle, frame_list_cycle, result_img_path
)
# 4. Video encoding (NVENC)
timings["video_encoding"] = self._encode_video_nvenc(
result_img_path, audio_path, output_path, fps
)
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
timings["total"] = time.time() - video_start
timings["frames_generated"] = len(res_frame_list)
timings["output_path"] = output_path
timings["audio_path"] = audio_path
batch_timings["videos"].append(timings)
print(f" [{idx+1}/{len(audio_paths)}] {audio_name}: {timings['total']:.2f}s")
batch_timings["total"] = time.time() - total_start
batch_timings["num_videos"] = len(audio_paths)
batch_timings["avg_per_video"] = batch_timings["total"] / len(audio_paths) if audio_paths else 0
return batch_timings
# Global server
server = MuseTalkServerV3()
# FastAPI app
app = FastAPI(
title="MuseTalk API v3",
description="Ultra-optimized API with parallel blending, NVENC, and batch processing",
version="3.0.0"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.on_event("startup")
async def startup_event():
server.load_models()
@app.get("/health")
async def health_check():
return {
"status": "ok" if server.is_loaded else "loading",
"models_loaded": server.is_loaded,
"device": str(server.device) if server.device else None,
"loaded_avatars": list(server.loaded_avatars.keys()),
"optimizations": {
"parallel_workers": server.num_workers,
"nvenc_enabled": server.use_nvenc,
"nvenc_preset": server.nvenc_preset
}
}
@app.get("/avatars")
async def list_avatars():
avatars = []
for p in server.avatar_dir.iterdir():
if p.is_dir() and (p / "metadata.pkl").exists():
with open(p / "metadata.pkl", 'rb') as f:
metadata = pickle.load(f)
metadata['loaded'] = p.name in server.loaded_avatars
avatars.append(metadata)
return {"avatars": avatars}
@app.post("/avatars/{avatar_name}/load")
async def load_avatar(avatar_name: str):
try:
server.load_avatar(avatar_name)
return {"status": "loaded", "avatar_name": avatar_name}
except FileNotFoundError as e:
raise HTTPException(status_code=404, detail=str(e))
@app.post("/avatars/{avatar_name}/unload")
async def unload_avatar(avatar_name: str):
server.unload_avatar(avatar_name)
return {"status": "unloaded", "avatar_name": avatar_name}
class GenerateRequest(BaseModel):
avatar_name: str
audio_path: str
output_path: str
fps: Optional[int] = 25
use_parallel_blending: bool = True
@app.post("/generate/avatar")
async def generate_with_avatar(request: GenerateRequest):
if not server.is_loaded:
raise HTTPException(status_code=503, detail="Models not loaded")
if not os.path.exists(request.audio_path):
raise HTTPException(status_code=404, detail=f"Audio not found: {request.audio_path}")
try:
timings = server.generate_with_avatar(
avatar_name=request.avatar_name,
audio_path=request.audio_path,
output_path=request.output_path,
fps=request.fps,
use_parallel_blending=request.use_parallel_blending
)
return {
"status": "success",
"output_path": request.output_path,
"timings": timings
}
except FileNotFoundError as e:
raise HTTPException(status_code=404, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
class BatchGenerateRequest(BaseModel):
avatar_name: str
audio_paths: List[str]
output_dir: str
fps: Optional[int] = 25
@app.post("/generate/batch")
async def generate_batch(request: BatchGenerateRequest):
"""Generate multiple videos from multiple audios."""
if not server.is_loaded:
raise HTTPException(status_code=503, detail="Models not loaded")
for audio_path in request.audio_paths:
if not os.path.exists(audio_path):
raise HTTPException(status_code=404, detail=f"Audio not found: {audio_path}")
try:
timings = server.generate_batch(
avatar_name=request.avatar_name,
audio_paths=request.audio_paths,
output_dir=request.output_dir,
fps=request.fps
)
return {
"status": "success",
"output_dir": request.output_dir,
"timings": timings
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=8000)
args = parser.parse_args()
uvicorn.run(app, host=args.host, port=args.port)
|