File size: 22,812 Bytes
af11910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
"""
MuseTalk HTTP API Server v3
Ultra-optimized with:
1. GPU-accelerated face blending (parallel processing)
2. NVENC hardware video encoding
3. Batch audio processing
"""
import os
import cv2
import copy
import torch
import glob
import shutil
import pickle
import numpy as np
import subprocess
import tempfile
import hashlib
import time
import asyncio
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
from pathlib import Path
from typing import Optional, List
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, BackgroundTasks
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from tqdm import tqdm
from omegaconf import OmegaConf
from transformers import WhisperModel
import uvicorn
import multiprocessing as mp

# MuseTalk imports
from musetalk.utils.blending import get_image
from musetalk.utils.face_parsing import FaceParsing
from musetalk.utils.audio_processor import AudioProcessor
from musetalk.utils.utils import get_file_type, datagen, load_all_model
from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs, coord_placeholder


def blend_single_frame(args):
    """Worker function for parallel face blending."""
    i, res_frame, bbox, ori_frame, extra_margin, version, parsing_mode, fp_config = args
    
    x1, y1, x2, y2 = bbox
    if version == "v15":
        y2 = y2 + extra_margin
        y2 = min(y2, ori_frame.shape[0])
    
    try:
        res_frame = cv2.resize(res_frame.astype(np.uint8), (x2-x1, y2-y1))
    except:
        return i, None
    
    # Create FaceParsing instance for this worker
    fp = FaceParsing(
        left_cheek_width=fp_config['left_cheek_width'],
        right_cheek_width=fp_config['right_cheek_width']
    )
    
    if version == "v15":
        combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2],
                                 mode=parsing_mode, fp=fp)
    else:
        combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], fp=fp)
    
    return i, combine_frame


class MuseTalkServerV3:
    """Ultra-optimized server."""

    def __init__(self):
        self.device = None
        self.vae = None
        self.unet = None
        self.pe = None
        self.whisper = None
        self.audio_processor = None
        self.fp = None
        self.timesteps = None
        self.weight_dtype = None
        self.is_loaded = False

        # Avatar cache
        self.loaded_avatars = {}
        self.avatar_dir = Path("./avatars")

        # Config
        self.fps = 25
        self.batch_size = 8
        self.use_float16 = True
        self.version = "v15"
        self.extra_margin = 10
        self.parsing_mode = "jaw"
        self.left_cheek_width = 90
        self.right_cheek_width = 90
        self.audio_padding_left = 2
        self.audio_padding_right = 2
        
        # Thread pool for parallel blending
        self.num_workers = min(8, mp.cpu_count())
        self.thread_pool = ThreadPoolExecutor(max_workers=self.num_workers)
        
        # NVENC settings
        self.use_nvenc = True
        self.nvenc_preset = "p4"  # p1(fastest) to p7(best quality)
        self.crf = 23

    def load_models(
        self,
        gpu_id: int = 0,
        unet_model_path: str = "./models/musetalkV15/unet.pth",
        unet_config: str = "./models/musetalk/config.json",
        vae_type: str = "sd-vae",
        whisper_dir: str = "./models/whisper",
        use_float16: bool = True,
        version: str = "v15"
    ):
        if self.is_loaded:
            print("Models already loaded!")
            return

        print("=" * 50)
        print("Loading MuseTalk models (v3 Ultra-Optimized)...")
        print("=" * 50)

        start_time = time.time()
        self.device = torch.device(f"cuda:{gpu_id}" if torch.cuda.is_available() else "cpu")
        print(f"Using device: {self.device}")
        print(f"Parallel workers: {self.num_workers}")
        print(f"NVENC encoding: {self.use_nvenc}")

        print("Loading VAE, UNet, PE...")
        self.vae, self.unet, self.pe = load_all_model(
            unet_model_path=unet_model_path,
            vae_type=vae_type,
            unet_config=unet_config,
            device=self.device
        )
        self.timesteps = torch.tensor([0], device=self.device)

        self.use_float16 = use_float16
        if use_float16:
            print("Converting to float16...")
            self.pe = self.pe.half()
            self.vae.vae = self.vae.vae.half()
            self.unet.model = self.unet.model.half()

        self.pe = self.pe.to(self.device)
        self.vae.vae = self.vae.vae.to(self.device)
        self.unet.model = self.unet.model.to(self.device)

        print("Loading Whisper model...")
        self.audio_processor = AudioProcessor(feature_extractor_path=whisper_dir)
        self.weight_dtype = self.unet.model.dtype
        self.whisper = WhisperModel.from_pretrained(whisper_dir)
        self.whisper = self.whisper.to(device=self.device, dtype=self.weight_dtype).eval()
        self.whisper.requires_grad_(False)

        self.version = version
        if version == "v15":
            self.fp = FaceParsing(
                left_cheek_width=self.left_cheek_width,
                right_cheek_width=self.right_cheek_width
            )
        else:
            self.fp = FaceParsing()

        self.is_loaded = True
        print(f"Models loaded in {time.time() - start_time:.2f}s")
        print("=" * 50)

    def load_avatar(self, avatar_name: str) -> dict:
        if avatar_name in self.loaded_avatars:
            return self.loaded_avatars[avatar_name]
        
        avatar_path = self.avatar_dir / avatar_name
        if not avatar_path.exists():
            raise FileNotFoundError(f"Avatar not found: {avatar_name}")
        
        print(f"Loading avatar '{avatar_name}' into memory...")
        t0 = time.time()
        
        avatar_data = {}
        
        with open(avatar_path / "metadata.pkl", 'rb') as f:
            avatar_data['metadata'] = pickle.load(f)
        
        with open(avatar_path / "coords.pkl", 'rb') as f:
            avatar_data['coord_list'] = pickle.load(f)
        
        with open(avatar_path / "frames.pkl", 'rb') as f:
            avatar_data['frame_list'] = pickle.load(f)
        
        with open(avatar_path / "latents.pkl", 'rb') as f:
            latents_np = pickle.load(f)
            avatar_data['latent_list'] = [
                torch.from_numpy(l).to(self.device) for l in latents_np
            ]
        
        with open(avatar_path / "crop_info.pkl", 'rb') as f:
            avatar_data['crop_info'] = pickle.load(f)
        
        self.loaded_avatars[avatar_name] = avatar_data
        print(f"Avatar loaded in {time.time() - t0:.2f}s")
        
        return avatar_data

    def unload_avatar(self, avatar_name: str):
        if avatar_name in self.loaded_avatars:
            del self.loaded_avatars[avatar_name]
            torch.cuda.empty_cache()

    def _encode_video_nvenc(self, frames_dir: str, audio_path: str, output_path: str, fps: int) -> float:
        """Encode video using NVENC hardware acceleration."""
        t0 = time.time()
        temp_vid = frames_dir.replace('/results', '/temp.mp4')
        
        if self.use_nvenc:
            # NVENC H.264 encoding (much faster)
            cmd_img2video = (
                f"ffmpeg -y -v warning -r {fps} -f image2 -i {frames_dir}/%08d.png "
                f"-c:v h264_nvenc -preset {self.nvenc_preset} -cq {self.crf} "
                f"-pix_fmt yuv420p {temp_vid}"
            )
        else:
            # Fallback to CPU encoding
            cmd_img2video = (
                f"ffmpeg -y -v warning -r {fps} -f image2 -i {frames_dir}/%08d.png "
                f"-vcodec libx264 -vf format=yuv420p -crf 18 {temp_vid}"
            )
        
        os.system(cmd_img2video)
        
        # Add audio
        cmd_combine = f"ffmpeg -y -v warning -i {audio_path} -i {temp_vid} -c:v copy -c:a aac {output_path}"
        os.system(cmd_combine)
        
        # Cleanup temp video
        if os.path.exists(temp_vid):
            os.remove(temp_vid)
        
        return time.time() - t0

    def _parallel_face_blending(self, res_frame_list, coord_list_cycle, frame_list_cycle, result_img_path) -> float:
        """Parallel face blending using thread pool."""
        t0 = time.time()
        
        fp_config = {
            'left_cheek_width': self.left_cheek_width,
            'right_cheek_width': self.right_cheek_width
        }
        
        # Prepare all tasks
        tasks = []
        for i, res_frame in enumerate(res_frame_list):
            bbox = coord_list_cycle[i % len(coord_list_cycle)]
            ori_frame = copy.deepcopy(frame_list_cycle[i % len(frame_list_cycle)])
            tasks.append((
                i, res_frame, bbox, ori_frame, 
                self.extra_margin, self.version, self.parsing_mode, fp_config
            ))
        
        # Process in parallel
        results = list(self.thread_pool.map(blend_single_frame, tasks))
        
        # Sort and save results
        results.sort(key=lambda x: x[0])
        for i, combine_frame in results:
            if combine_frame is not None:
                cv2.imwrite(f"{result_img_path}/{str(i).zfill(8)}.png", combine_frame)
        
        return time.time() - t0

    @torch.no_grad()
    def generate_with_avatar(
        self,
        avatar_name: str,
        audio_path: str,
        output_path: str,
        fps: Optional[int] = None,
        use_parallel_blending: bool = True
    ) -> dict:
        """Generate video using pre-processed avatar with all optimizations."""
        if not self.is_loaded:
            raise RuntimeError("Models not loaded!")

        fps = fps or self.fps
        timings = {}
        total_start = time.time()

        # Load avatar
        t0 = time.time()
        avatar = self.load_avatar(avatar_name)
        timings["avatar_load"] = time.time() - t0

        coord_list = avatar['coord_list']
        frame_list = avatar['frame_list']
        input_latent_list = avatar['latent_list']

        temp_dir = tempfile.mkdtemp()

        try:
            # 1. Extract audio features
            t0 = time.time()
            whisper_input_features, librosa_length = self.audio_processor.get_audio_feature(audio_path)
            whisper_chunks = self.audio_processor.get_whisper_chunk(
                whisper_input_features,
                self.device,
                self.weight_dtype,
                self.whisper,
                librosa_length,
                fps=fps,
                audio_padding_length_left=self.audio_padding_left,
                audio_padding_length_right=self.audio_padding_right,
            )
            timings["whisper_features"] = time.time() - t0

            # 2. Prepare cycled lists
            frame_list_cycle = frame_list + frame_list[::-1]
            coord_list_cycle = coord_list + coord_list[::-1]
            input_latent_list_cycle = input_latent_list + input_latent_list[::-1]

            # 3. UNet inference
            t0 = time.time()
            gen = datagen(
                whisper_chunks=whisper_chunks,
                vae_encode_latents=input_latent_list_cycle,
                batch_size=self.batch_size,
                delay_frame=0,
                device=self.device,
            )

            res_frame_list = []
            for whisper_batch, latent_batch in gen:
                audio_feature_batch = self.pe(whisper_batch)
                latent_batch = latent_batch.to(dtype=self.unet.model.dtype)
                pred_latents = self.unet.model(
                    latent_batch, self.timesteps,
                    encoder_hidden_states=audio_feature_batch
                ).sample
                recon = self.vae.decode_latents(pred_latents)
                for res_frame in recon:
                    res_frame_list.append(res_frame)

            timings["unet_inference"] = time.time() - t0

            # 4. Face blending (parallel or sequential)
            result_img_path = os.path.join(temp_dir, "results")
            os.makedirs(result_img_path, exist_ok=True)

            if use_parallel_blending:
                timings["face_blending"] = self._parallel_face_blending(
                    res_frame_list, coord_list_cycle, frame_list_cycle, result_img_path
                )
                timings["blending_mode"] = "parallel"
            else:
                t0 = time.time()
                for i, res_frame in enumerate(res_frame_list):
                    bbox = coord_list_cycle[i % len(coord_list_cycle)]
                    ori_frame = copy.deepcopy(frame_list_cycle[i % len(frame_list_cycle)])
                    x1, y1, x2, y2 = bbox
                    
                    if self.version == "v15":
                        y2 = y2 + self.extra_margin
                        y2 = min(y2, ori_frame.shape[0])
                    
                    try:
                        res_frame = cv2.resize(res_frame.astype(np.uint8), (x2-x1, y2-y1))
                    except:
                        continue

                    if self.version == "v15":
                        combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2],
                                                 mode=self.parsing_mode, fp=self.fp)
                    else:
                        combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], fp=self.fp)

                    cv2.imwrite(f"{result_img_path}/{str(i).zfill(8)}.png", combine_frame)
                timings["face_blending"] = time.time() - t0
                timings["blending_mode"] = "sequential"

            # 5. Video encoding (NVENC)
            timings["video_encoding"] = self._encode_video_nvenc(
                result_img_path, audio_path, output_path, fps
            )
            timings["encoding_mode"] = "nvenc" if self.use_nvenc else "cpu"

        finally:
            shutil.rmtree(temp_dir, ignore_errors=True)

        timings["total"] = time.time() - total_start
        timings["frames_generated"] = len(res_frame_list)

        return timings

    @torch.no_grad()
    def generate_batch(
        self,
        avatar_name: str,
        audio_paths: List[str],
        output_dir: str,
        fps: Optional[int] = None
    ) -> dict:
        """Generate multiple videos from multiple audios efficiently."""
        if not self.is_loaded:
            raise RuntimeError("Models not loaded!")

        fps = fps or self.fps
        batch_timings = {"videos": [], "total": 0}
        total_start = time.time()

        # Load avatar once
        t0 = time.time()
        avatar = self.load_avatar(avatar_name)
        batch_timings["avatar_load"] = time.time() - t0

        coord_list = avatar['coord_list']
        frame_list = avatar['frame_list']
        input_latent_list = avatar['latent_list']

        # Prepare cycled lists once
        frame_list_cycle = frame_list + frame_list[::-1]
        coord_list_cycle = coord_list + coord_list[::-1]
        input_latent_list_cycle = input_latent_list + input_latent_list[::-1]

        os.makedirs(output_dir, exist_ok=True)

        for idx, audio_path in enumerate(audio_paths):
            video_start = time.time()
            timings = {}
            
            audio_name = Path(audio_path).stem
            output_path = os.path.join(output_dir, f"{audio_name}.mp4")
            
            temp_dir = tempfile.mkdtemp()

            try:
                # 1. Extract audio features
                t0 = time.time()
                whisper_input_features, librosa_length = self.audio_processor.get_audio_feature(audio_path)
                whisper_chunks = self.audio_processor.get_whisper_chunk(
                    whisper_input_features,
                    self.device,
                    self.weight_dtype,
                    self.whisper,
                    librosa_length,
                    fps=fps,
                    audio_padding_length_left=self.audio_padding_left,
                    audio_padding_length_right=self.audio_padding_right,
                )
                timings["whisper_features"] = time.time() - t0

                # 2. UNet inference
                t0 = time.time()
                gen = datagen(
                    whisper_chunks=whisper_chunks,
                    vae_encode_latents=input_latent_list_cycle,
                    batch_size=self.batch_size,
                    delay_frame=0,
                    device=self.device,
                )

                res_frame_list = []
                for whisper_batch, latent_batch in gen:
                    audio_feature_batch = self.pe(whisper_batch)
                    latent_batch = latent_batch.to(dtype=self.unet.model.dtype)
                    pred_latents = self.unet.model(
                        latent_batch, self.timesteps,
                        encoder_hidden_states=audio_feature_batch
                    ).sample
                    recon = self.vae.decode_latents(pred_latents)
                    for res_frame in recon:
                        res_frame_list.append(res_frame)

                timings["unet_inference"] = time.time() - t0

                # 3. Face blending (parallel)
                result_img_path = os.path.join(temp_dir, "results")
                os.makedirs(result_img_path, exist_ok=True)
                timings["face_blending"] = self._parallel_face_blending(
                    res_frame_list, coord_list_cycle, frame_list_cycle, result_img_path
                )

                # 4. Video encoding (NVENC)
                timings["video_encoding"] = self._encode_video_nvenc(
                    result_img_path, audio_path, output_path, fps
                )

            finally:
                shutil.rmtree(temp_dir, ignore_errors=True)

            timings["total"] = time.time() - video_start
            timings["frames_generated"] = len(res_frame_list)
            timings["output_path"] = output_path
            timings["audio_path"] = audio_path
            
            batch_timings["videos"].append(timings)
            print(f"  [{idx+1}/{len(audio_paths)}] {audio_name}: {timings['total']:.2f}s")

        batch_timings["total"] = time.time() - total_start
        batch_timings["num_videos"] = len(audio_paths)
        batch_timings["avg_per_video"] = batch_timings["total"] / len(audio_paths) if audio_paths else 0

        return batch_timings


# Global server
server = MuseTalkServerV3()

# FastAPI app
app = FastAPI(
    title="MuseTalk API v3",
    description="Ultra-optimized API with parallel blending, NVENC, and batch processing",
    version="3.0.0"
)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


@app.on_event("startup")
async def startup_event():
    server.load_models()


@app.get("/health")
async def health_check():
    return {
        "status": "ok" if server.is_loaded else "loading",
        "models_loaded": server.is_loaded,
        "device": str(server.device) if server.device else None,
        "loaded_avatars": list(server.loaded_avatars.keys()),
        "optimizations": {
            "parallel_workers": server.num_workers,
            "nvenc_enabled": server.use_nvenc,
            "nvenc_preset": server.nvenc_preset
        }
    }


@app.get("/avatars")
async def list_avatars():
    avatars = []
    for p in server.avatar_dir.iterdir():
        if p.is_dir() and (p / "metadata.pkl").exists():
            with open(p / "metadata.pkl", 'rb') as f:
                metadata = pickle.load(f)
            metadata['loaded'] = p.name in server.loaded_avatars
            avatars.append(metadata)
    return {"avatars": avatars}


@app.post("/avatars/{avatar_name}/load")
async def load_avatar(avatar_name: str):
    try:
        server.load_avatar(avatar_name)
        return {"status": "loaded", "avatar_name": avatar_name}
    except FileNotFoundError as e:
        raise HTTPException(status_code=404, detail=str(e))


@app.post("/avatars/{avatar_name}/unload")
async def unload_avatar(avatar_name: str):
    server.unload_avatar(avatar_name)
    return {"status": "unloaded", "avatar_name": avatar_name}


class GenerateRequest(BaseModel):
    avatar_name: str
    audio_path: str
    output_path: str
    fps: Optional[int] = 25
    use_parallel_blending: bool = True


@app.post("/generate/avatar")
async def generate_with_avatar(request: GenerateRequest):
    if not server.is_loaded:
        raise HTTPException(status_code=503, detail="Models not loaded")

    if not os.path.exists(request.audio_path):
        raise HTTPException(status_code=404, detail=f"Audio not found: {request.audio_path}")

    try:
        timings = server.generate_with_avatar(
            avatar_name=request.avatar_name,
            audio_path=request.audio_path,
            output_path=request.output_path,
            fps=request.fps,
            use_parallel_blending=request.use_parallel_blending
        )
        return {
            "status": "success",
            "output_path": request.output_path,
            "timings": timings
        }
    except FileNotFoundError as e:
        raise HTTPException(status_code=404, detail=str(e))
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


class BatchGenerateRequest(BaseModel):
    avatar_name: str
    audio_paths: List[str]
    output_dir: str
    fps: Optional[int] = 25


@app.post("/generate/batch")
async def generate_batch(request: BatchGenerateRequest):
    """Generate multiple videos from multiple audios."""
    if not server.is_loaded:
        raise HTTPException(status_code=503, detail="Models not loaded")

    for audio_path in request.audio_paths:
        if not os.path.exists(audio_path):
            raise HTTPException(status_code=404, detail=f"Audio not found: {audio_path}")

    try:
        timings = server.generate_batch(
            avatar_name=request.avatar_name,
            audio_paths=request.audio_paths,
            output_dir=request.output_dir,
            fps=request.fps
        )
        return {
            "status": "success",
            "output_dir": request.output_dir,
            "timings": timings
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int, default=8000)
    args = parser.parse_args()
    
    uvicorn.run(app, host=args.host, port=args.port)