Update README.md
Browse files
README.md
CHANGED
|
@@ -5,150 +5,11 @@ base_model:
|
|
| 5 |
|
| 6 |
modelopt NVFP4 quantized MiniMax-M2
|
| 7 |
|
| 8 |
-
Instructions from another user, running on RTX Pro 6000 Blackwell:
|
| 9 |
-
|
| 10 |
-
Running this model on vllm/vllm-openai:nightly has been met with mixed results. Sometimes working, sometimes not.
|
| 11 |
-
|
| 12 |
-
I noticed that I could not run this model with just the base vllm v0.12.0 because it was built using cuda 12.9.
|
| 13 |
-
Other discussions on this model show that the model is working with vllm v0.12.0 when using cuda 13.
|
| 14 |
-
|
| 15 |
-
I stepped through the following instructions in order to reliably build vllm & run this model using vllm 0.12.0 and cuda 13.0.2.
|
| 16 |
-
|
| 17 |
-
# Instructions
|
| 18 |
-
## 1. Build VLLM Image
|
| 19 |
-
|
| 20 |
-
```bash
|
| 21 |
-
# Clone the VLLM Repo
|
| 22 |
-
if [[ ! -d vllm ]]; then
|
| 23 |
-
git clone https://github.com/vllm-project/vllm.git
|
| 24 |
-
fi
|
| 25 |
-
|
| 26 |
-
# Checkout the v0.12.0 version of VLLM
|
| 27 |
-
cd vllm
|
| 28 |
-
git checkout releases/v0.12.0
|
| 29 |
-
|
| 30 |
-
# Build with cuda 13.0.2, use precompiled vllm cu130, & ubuntu 22.04 image
|
| 31 |
-
DOCKER_BUILDKIT=1 \
|
| 32 |
-
docker build . \
|
| 33 |
-
--target vllm-openai \
|
| 34 |
-
--tag vllm/vllm-openai:custom-vllm-0.12.0-cuda-13.0.2-py-3.12 \
|
| 35 |
-
--file docker/Dockerfile \
|
| 36 |
-
--build-arg max_jobs=64 \
|
| 37 |
-
--build-arg nvcc_threads=16 \
|
| 38 |
-
--build-arg CUDA_VERSION=13.0.2 \
|
| 39 |
-
--build-arg PYTHON_VERSION=3.12 \
|
| 40 |
-
--build-arg VLLM_USE_PRECOMPILED=true \
|
| 41 |
-
--build-arg VLLM_MAIN_CUDA_VERSION=130 \
|
| 42 |
-
--build-arg BUILD_BASE_IMAGE=nvidia/cuda:13.0.2-devel-ubuntu22.04 \
|
| 43 |
-
--build-arg RUN_WHEEL_CHECK=false \
|
| 44 |
-
;
|
| 45 |
-
# ubuntu 22.04 required because 20.04 does not have cuda 13.0.2 varient
|
| 46 |
-
```
|
| 47 |
-
|
| 48 |
-
## 2. Run the custom VLLM Image
|
| 49 |
-
|
| 50 |
-
```yaml
|
| 51 |
-
services:
|
| 52 |
-
vllm:
|
| 53 |
-
|
| 54 |
-
# !!! Notice !!! our custom built image is here from the build command above
|
| 55 |
-
image: vllm/vllm-openai:custom-vllm-0.12.0-cuda-13.0.2-py-3.12
|
| 56 |
-
|
| 57 |
-
environment:
|
| 58 |
-
# Optional
|
| 59 |
-
VLLM_NO_USAGE_STATS: "1"
|
| 60 |
-
DO_NOT_TRACK: "1"
|
| 61 |
-
CUDA_DEVICE_ORDER: PCI_BUS_ID
|
| 62 |
-
VLLM_LOGGING_LEVEL: INFO
|
| 63 |
-
|
| 64 |
-
# Required (I think)
|
| 65 |
-
VLLM_ATTENTION_BACKEND: FLASHINFER
|
| 66 |
-
VLLM_FLASHINFER_MOE_BACKEND: throughput
|
| 67 |
-
VLLM_USE_FLASHINFER_MOE_FP16: 1
|
| 68 |
-
VLLM_USE_FLASHINFER_MOE_FP8: 1
|
| 69 |
-
VLLM_USE_FLASHINFER_MOE_FP4: 1
|
| 70 |
-
VLLM_USE_FLASHINFER_MOE_MXFP4_BF16: 1
|
| 71 |
-
VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS: 1
|
| 72 |
-
VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8: 1
|
| 73 |
-
|
| 74 |
-
# Required (I think)
|
| 75 |
-
VLLM_WORKER_MULTIPROC_METHOD: spawn
|
| 76 |
-
NCCL_P2P_DISABLE: 1
|
| 77 |
-
|
| 78 |
-
entrypoint: /bin/bash
|
| 79 |
-
command:
|
| 80 |
-
- -c
|
| 81 |
-
- |
|
| 82 |
-
vllm serve \
|
| 83 |
-
/root/.cache/huggingface/hub/models--lukealonso--MiniMax-M2-NVFP4/snapshots/d8993b15556ab7294530f1ba50a93ad130166174/ \
|
| 84 |
-
--served-model-name minimax-m2-fp4 \
|
| 85 |
-
--gpu-memory-utilization 0.95 \
|
| 86 |
-
--pipeline-parallel-size 1 \
|
| 87 |
-
--enable-expert-parallel \
|
| 88 |
-
--tensor-parallel-size 4 \
|
| 89 |
-
--max-model-len $(( 192 * 1024 )) \
|
| 90 |
-
--max-num-seqs 32 \
|
| 91 |
-
--enable-auto-tool-choice \
|
| 92 |
-
--reasoning-parser minimax_m2_append_think \
|
| 93 |
-
--tool-call-parser minimax_m2 \
|
| 94 |
-
--all2all-backend pplx \
|
| 95 |
-
--enable-prefix-caching \
|
| 96 |
-
--enable-chunked-prefill \
|
| 97 |
-
--max-num-batched-tokens $(( 64 * 1024 )) \
|
| 98 |
-
--dtype auto \
|
| 99 |
-
--kv-cache-dtype fp8 \
|
| 100 |
-
;
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
```
|
| 105 |
-
|
| 106 |
-
# VLLM CLI Arugments Explained
|
| 107 |
-
|
| 108 |
-
## Required Model Arguments
|
| 109 |
-
|
| 110 |
-
1. The path to the model (alternatively huggingface `lukealonso/MiniMax-M2-NVFP4`)
|
| 111 |
-
- `/root/.cache/huggingface/hub/models--lukealonso--MiniMax-M2-NVFP4/snapshots/d8993b15556ab7294530f1ba50a93ad130166174/`
|
| 112 |
-
2. The minimax-m2 model parsers & tool config
|
| 113 |
-
- `--reasoning-parser minimax_m2_append_think`
|
| 114 |
-
- `--tool-call-parser minimax_m2`
|
| 115 |
-
- `--enable-auto-tool-choice`
|
| 116 |
-
|
| 117 |
-
## Required Compute Arguments
|
| 118 |
-
1. The parallelism mode (multi gpu, 4x in this example)
|
| 119 |
-
- `--enable-expert-parallel`
|
| 120 |
-
- `--pipeline-parallel-size 1`
|
| 121 |
-
- `--tensor-parallel-size 4`
|
| 122 |
-
- `--all2all-backend pplx`
|
| 123 |
-
2. The kv cache & layer data types
|
| 124 |
-
- `--kv-cache-dtype fp8`
|
| 125 |
-
- `--dtype auto`
|
| 126 |
-
|
| 127 |
-
## Optional Model Arguments
|
| 128 |
-
1. The name of the model to present to api clients
|
| 129 |
-
- `--served-model-name minimax-m2-fp4`
|
| 130 |
-
2. The context size available to the model 192k max
|
| 131 |
-
- `--max-model-len $(( 192 * 1024 ))`
|
| 132 |
-
3. The prompt chunking size (faster time-til-first-token with large prompts)
|
| 133 |
-
- `--enable-chunked-prefill`
|
| 134 |
-
- `--max-num-batched-tokens $(( 64 * 1024 ))`
|
| 135 |
-
|
| 136 |
-
## Optional Performance Arguments
|
| 137 |
-
1. How much system VRAM can vllm use?
|
| 138 |
-
- `--gpu-memory-utilization 0.95`
|
| 139 |
-
2. How many parallel requests can be made to the server at once.
|
| 140 |
-
- `--max-num-seqs 32`
|
| 141 |
-
3. Allow KV cache sharing for overlapping prompts
|
| 142 |
-
- `--enable-prefix-caching`
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
Tested (but not extensively validated) on *2x* RTX Pro 6000 Blackwell via:
|
| 147 |
-
(note that these instructions no longer work due to nightly vLLM breaking NVFP4 support)
|
| 148 |
|
| 149 |
```
|
| 150 |
inference:
|
| 151 |
-
image: vllm/vllm-openai:nightly
|
| 152 |
container_name: inference
|
| 153 |
ports:
|
| 154 |
- "0.0.0.0:8000:8000"
|
|
|
|
| 5 |
|
| 6 |
modelopt NVFP4 quantized MiniMax-M2
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
Tested (but not extensively validated) on *2x* RTX Pro 6000 Blackwell via:
|
|
|
|
| 9 |
|
| 10 |
```
|
| 11 |
inference:
|
| 12 |
+
image: vllm/vllm-openai:nightly-96142f209453a381fcaf9d9d010bbf8711119a77
|
| 13 |
container_name: inference
|
| 14 |
ports:
|
| 15 |
- "0.0.0.0:8000:8000"
|