jerryfeng commited on
Commit
3d1babf
·
1 Parent(s): b427039

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -1
README.md CHANGED
@@ -1,3 +1,86 @@
1
  ---
2
  license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ ---
4
+
5
+ ## Overview
6
+ StreamDiffusionV2 is an open-source interactive diffusion pipeline for real-time streaming applications. It scales across diverse GPU setups, supports flexible denoising steps, and delivers high FPS for creators and platforms. Further details are available on our project [homepage](https://streamdiffusionv2.github.io/).
7
+
8
+ ## Prerequisites
9
+ - OS: Linux with NVIDIA GPU
10
+ - CUDA-compatible GPU and drivers
11
+
12
+ ## Installation
13
+ ```shell
14
+ conda create -n stream python=3.10.0
15
+ conda activate stream
16
+ # Require CUDA 12.4 or above, please check via `nvcc -V`
17
+ pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu124
18
+ pip install -r requirements.txt
19
+ python setup.py develop
20
+ ```
21
+
22
+ ## Download Checkpoints
23
+ ```shell
24
+ huggingface-cli download --resume-download Wan-AI/Wan2.1-T2V-1.3B --local-dir wan_models/Wan2.1-T2V-1.3B
25
+ huggingface-cli download --resume-download jerryfeng/StreamDiffusionV2 --local-dir ./ckpts/wan_causal_dmd_v2v
26
+ ```
27
+
28
+ ## Offline Inference
29
+
30
+ ### Single GPU
31
+
32
+ ```shell
33
+ python streamv2v/inference.py \
34
+ --config_path configs/wan_causal_dmd_v2v.yaml \
35
+ --checkpoint_folder ckpts/wan_causal_dmd_v2v \
36
+ --output_folder outputs/ \
37
+ --prompt_file_path prompt.txt \
38
+ --video_path original.mp4 \
39
+ --height 480 \
40
+ --width 832 \
41
+ --fps 16 \
42
+ --step 2
43
+ ```
44
+ Note: `--step` sets how many denoising steps are used during inference.
45
+
46
+ ### Multi-GPU
47
+
48
+ ```shell
49
+ torchrun --nproc_per_node=2 --master_port=29501 streamv2v/inference_pipe.py \
50
+ --config_path configs/wan_causal_dmd_v2v.yaml \
51
+ --checkpoint_folder ckpts/wan_causal_dmd_v2v \
52
+ --output_folder outputs/ \
53
+ --prompt_file_path prompt.txt \
54
+ --video_path original.mp4 \
55
+ --height 480 \
56
+ --width 832 \
57
+ --fps 16 \
58
+ --step 2
59
+ # --schedule_block # optional: enable block scheduling
60
+ ```
61
+ Note: `--step` sets how many denoising steps are used during inference. Enabling `--schedule_block` can provide optimal throughput.
62
+ Adjust `--nproc_per_node` to your GPU count. For different resolutions or FPS, change `--height`, `--width`, and `--fps` accordingly.
63
+
64
+ ## Online Inference (Web UI)
65
+ A minimal web demo is available under `demo/`. For setup and startup, please refer to [demo](demo/README.md).
66
+ - Access in a browser after startup: `http://0.0.0.0:7860` or `http://localhost:7860`
67
+
68
+
69
+ ## Acknowledgements
70
+ StreamDiffusionV2 is inspired by the prior works [StreamDiffusion](https://github.com/cumulo-autumn/StreamDiffusion) and [StreamV2V](https://github.com/Jeff-LiangF/streamv2v). Our Causal DiT builds upon [CausVid](https://github.com/tianweiy/CausVid), and the rolling KV cache design is inspired by [Self-Forcing](https://github.com/guandeh17/Self-Forcing).
71
+
72
+ We are grateful to the team members of [StreamDiffusion](https://github.com/cumulo-autumn/StreamDiffusion) for their support. We also thank [First Intelligence](https://first-intelligence.com) and [Daydream](https://docs.daydream.live/) team for their great feedback.
73
+
74
+ We also especially thank DayDream team for the great collaboration and incorporating our StreamDiffusionV2 pipeline into their cool [Demo UI](https://github.com/daydreamlive/scope).
75
+
76
+ ## Citation
77
+ If you find this repository useful in your research, please consider giving a star ⭐ or a citation.
78
+ ```BibTeX
79
+ @article{streamdiffusionv2,
80
+ title={StreamDiffusionV2: An Open-Sourced Interactive Diffusion Pipeline for Streaming Applications},
81
+ author={Tianrui Feng and Zhi Li and Haocheng Xi and Muyang Li and Shuo Yang and Xiuyu Li and Lvmin Zhang and Kelly Peng and Song Han and Maneesh Agrawala and Kurt Keutzer and Akio Kodaira and Chenfeng Xu},
82
+ journal={Project Page},
83
+ year={2025},
84
+ url={https://streamdiffusionv2.github.io/}
85
+ }
86
+ ```