xingyusu commited on
Commit
446af2e
·
1 Parent(s): 70d0dce
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. the_code/Fly/FLY_Augmentation_Pruning.ipynb +0 -0
  2. the_code/Fly/FLY_Cbust_Homer_Motif.ipynb +0 -0
  3. the_code/Fly/FLY_EFS_TFModisco.ipynb +0 -0
  4. the_code/Fly/FLY_GAN.ipynb +0 -0
  5. the_code/Fly/FLY_KC_ATAC.ipynb +0 -0
  6. the_code/Fly/FLY_KC_EFS.ipynb +3 -0
  7. the_code/Fly/FLY_KC_EFS_Mutation_Combination.ipynb +0 -0
  8. the_code/Fly/FLY_KC_EFS_Mutation_Combination_All3Mut.ipynb +311 -0
  9. the_code/Fly/FLY_KC_EFS_Steps_Rescue.ipynb +0 -0
  10. the_code/Fly/FLY_KC_Motif_Implanting.ipynb +0 -0
  11. the_code/Fly/FLY_KC_Near_Enhancer_Seqs.ipynb +0 -0
  12. the_code/Fly/FLY_KC_Repressors.ipynb +0 -0
  13. the_code/Fly/FLY_PNG_EFS.ipynb +3 -0
  14. the_code/Fly/FLY_using_DeepFlyBrain.ipynb +0 -0
  15. the_code/Fly/README.txt +175 -0
  16. the_code/Fly/data/atac/OmniATAC_KC_EFS-1.bwa.out.fixmate.possorted.dedup.noblacklist.RPGCnormalized.bw +3 -0
  17. the_code/Fly/data/atac/OmniATAC_KC_EFS-2.bwa.out.fixmate.possorted.dedup.noblacklist.RPGCnormalized.bw +3 -0
  18. the_code/Fly/data/atac/OmniATAC_KC_EFS-3.bwa.out.fixmate.possorted.dedup.noblacklist.RPGCnormalized.bw +3 -0
  19. the_code/Fly/data/atac/OmniATAC_KC_EFS-4.bwa.out.fixmate.possorted.dedup.noblacklist.RPGCnormalized.bw +3 -0
  20. the_code/Fly/data/atac/OmniATAC_KC_EFS-5.bwa.out.fixmate.possorted.dedup.noblacklist.RPGCnormalized.bw +3 -0
  21. the_code/Fly/data/atac/OmniATAC_KC_EFS-6.bwa.out.fixmate.possorted.dedup.noblacklist.RPGCnormalized.bw +3 -0
  22. the_code/Fly/data/augmentation_pruning/Janssens_et_al_DFB_peaks_predictions.pkl +3 -0
  23. the_code/Fly/data/augmentation_pruning/Janssens_et_al_enhancers.bed +3 -0
  24. the_code/Fly/data/augmentation_pruning/Janssens_et_al_enhancers.fa +3 -0
  25. the_code/Fly/data/cbust/BG_M1_results/BG_cbust_mot_array_merged.pkl +3 -0
  26. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_0.cb +13 -0
  27. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_1.cb +18 -0
  28. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_10.cb +21 -0
  29. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_11.cb +27 -0
  30. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_12.cb +28 -0
  31. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_2.cb +11 -0
  32. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_3.cb +17 -0
  33. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_4.cb +18 -0
  34. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_5.cb +8 -0
  35. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_6.cb +8 -0
  36. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_7.cb +11 -0
  37. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_8.cb +15 -0
  38. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_9.cb +13 -0
  39. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_0.cb +7 -0
  40. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_1.cb +9 -0
  41. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_10.cb +20 -0
  42. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_2.cb +9 -0
  43. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_3.cb +9 -0
  44. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_4.cb +8 -0
  45. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_5.cb +7 -0
  46. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_6.cb +11 -0
  47. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_7.cb +9 -0
  48. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_8.cb +17 -0
  49. the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_9.cb +14 -0
  50. the_code/Fly/data/cbust/EFS_M1_results/EFS_cbust_mot_array_merged.pkl +3 -0
the_code/Fly/FLY_Augmentation_Pruning.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
the_code/Fly/FLY_Cbust_Homer_Motif.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
the_code/Fly/FLY_EFS_TFModisco.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
the_code/Fly/FLY_GAN.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
the_code/Fly/FLY_KC_ATAC.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
the_code/Fly/FLY_KC_EFS.ipynb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c55c3468c7626f8e2e95f7bee68d03dd7e6974493ab90e095f152b66e46acb70
3
+ size 10747046
the_code/Fly/FLY_KC_EFS_Mutation_Combination.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
the_code/Fly/FLY_KC_EFS_Mutation_Combination_All3Mut.ipynb ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "52b2bde6-b2de-45a4-838c-f26efc68efc7",
6
+ "metadata": {},
7
+ "source": [
8
+ "# This notebooks shows how to generate and score sequences with all possible 3 mutations\n",
9
+ "#### It uses the synthetic sequences file generated via FLY_KC_EFS notebook.\n",
10
+ "#### It consists of:\n",
11
+ "* Generating sequences with all possible 3 mutations\n",
12
+ "* Comparing prediction scores\n",
13
+ "#### Figures are saved to ./figures/mutation_combination"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "markdown",
18
+ "id": "84648f4f-ef03-44a5-8eaf-d1c7680b80df",
19
+ "metadata": {},
20
+ "source": [
21
+ "### General imports\n"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "code",
26
+ "execution_count": 1,
27
+ "id": "a3b52957-4ebe-4b5d-bd90-7b6064baa71e",
28
+ "metadata": {},
29
+ "outputs": [],
30
+ "source": [
31
+ "import sys \n",
32
+ "import os\n",
33
+ "import pickle\n",
34
+ "import utils\n",
35
+ "import numpy as np\n",
36
+ "import scipy\n",
37
+ "import tensorflow as tf\n",
38
+ "tf.disable_eager_execution()\n",
39
+ "tf.logging.set_verbosity(tf.logging.ERROR)\n",
40
+ "\n",
41
+ "import matplotlib\n",
42
+ "import matplotlib.pyplot as plt\n",
43
+ "%matplotlib inline\n",
44
+ "matplotlib.style.use(\"default\")\n",
45
+ "matplotlib.rcParams['pdf.fonttype'] = 42\n",
46
+ "matplotlib.rcParams['ps.fonttype'] = 42"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "markdown",
51
+ "id": "c81ec4b4-5c14-4a9f-8088-2f24e870c0d9",
52
+ "metadata": {},
53
+ "source": [
54
+ "### Loading the model"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "code",
59
+ "execution_count": 2,
60
+ "id": "5d1787be-f329-475d-911f-6d301279a8df",
61
+ "metadata": {},
62
+ "outputs": [
63
+ {
64
+ "name": "stdout",
65
+ "output_type": "stream",
66
+ "text": [
67
+ "Loading model...\n"
68
+ ]
69
+ }
70
+ ],
71
+ "source": [
72
+ "print('Loading model...')\n",
73
+ "import shap\n",
74
+ "tf.disable_eager_execution()\n",
75
+ "model_dict = {}\n",
76
+ "name = \"DeepFlyBrain\"\n",
77
+ "model_json_file = \"models/deepflybrain/model.json\"\n",
78
+ "model_hdf5_file = \"models/deepflybrain/model_epoch_83.hdf5\"\n",
79
+ "model_dict[name] = utils.load_model(model_json_file, model_hdf5_file)"
80
+ ]
81
+ },
82
+ {
83
+ "cell_type": "markdown",
84
+ "id": "62ec272e-205d-4f7e-b07d-c17b4b341788",
85
+ "metadata": {},
86
+ "source": [
87
+ "### Loading the generated sequences via in silico evolution¶"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": 4,
93
+ "id": "93b2fac3-9b87-48a0-a50a-4f74e82c4440",
94
+ "metadata": {},
95
+ "outputs": [],
96
+ "source": [
97
+ "import pickle\n",
98
+ "f = open(\"data/deepflybrain/FLY_KC_EFS_6000_withmut.pkl\", \"rb\")\n",
99
+ "evolved_seq_6000_dict = pickle.load(f)\n",
100
+ "f.close()"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "markdown",
105
+ "id": "75596bc9-afa3-485e-86c5-c667a659ae3a",
106
+ "metadata": {},
107
+ "source": [
108
+ "### Following code generates sequences with all possible 3 mutations starting from a single random sequence"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "code",
113
+ "execution_count": null,
114
+ "id": "24702a4b-13da-464e-ae92-24e5ac535c8e",
115
+ "metadata": {},
116
+ "outputs": [],
117
+ "source": [
118
+ "from itertools import combinations, combinations_with_replacement, product\n",
119
+ "location_combinations = list(combinations(list(range(500)), 3))\n",
120
+ "nucleotide_combinations = list(product(range(3), repeat = 3))\n",
121
+ "\n",
122
+ "nuc_to_onehot = {\"A\":[1, 0, 0, 0],\"C\":[0, 1, 0, 0],\"G\":[0, 0, 1, 0],\"T\":[0, 0, 0, 1]}\n",
123
+ "def create_possible_single_mutations(onehot):\n",
124
+ " mutagenesis_X = {\"loc\":[],\"nuc_onehot\":[]}\n",
125
+ " for mutloc,nt in enumerate(onehot):\n",
126
+ " new_X = np.copy(onehot)\n",
127
+ " if list(nt) == [1, 0, 0, 0]:\n",
128
+ " mutagenesis_X[\"loc\"].append(mutloc)\n",
129
+ " mutagenesis_X[\"loc\"].append(mutloc)\n",
130
+ " mutagenesis_X[\"loc\"].append(mutloc)\n",
131
+ " mutagenesis_X[\"nuc_onehot\"].append(np.array([0, 1, 0, 0], dtype='int8'))\n",
132
+ " mutagenesis_X[\"nuc_onehot\"].append(np.array([0, 0, 1, 0], dtype='int8'))\n",
133
+ " mutagenesis_X[\"nuc_onehot\"].append(np.array([0, 0, 0, 1], dtype='int8'))\n",
134
+ " if list(nt) == [0, 1, 0, 0]:\n",
135
+ " mutagenesis_X[\"loc\"].append(mutloc)\n",
136
+ " mutagenesis_X[\"loc\"].append(mutloc)\n",
137
+ " mutagenesis_X[\"loc\"].append(mutloc)\n",
138
+ " mutagenesis_X[\"nuc_onehot\"].append(np.array([1, 0, 0, 0], dtype='int8'))\n",
139
+ " mutagenesis_X[\"nuc_onehot\"].append(np.array([0, 0, 1, 0], dtype='int8'))\n",
140
+ " mutagenesis_X[\"nuc_onehot\"].append(np.array([0, 0, 0, 1], dtype='int8'))\n",
141
+ " if list(nt) == [0, 0, 1, 0]:\n",
142
+ " mutagenesis_X[\"loc\"].append(mutloc)\n",
143
+ " mutagenesis_X[\"loc\"].append(mutloc)\n",
144
+ " mutagenesis_X[\"loc\"].append(mutloc)\n",
145
+ " mutagenesis_X[\"nuc_onehot\"].append(np.array([1, 0, 0, 0], dtype='int8'))\n",
146
+ " mutagenesis_X[\"nuc_onehot\"].append(np.array([0, 1, 0, 0], dtype='int8'))\n",
147
+ " mutagenesis_X[\"nuc_onehot\"].append(np.array([0, 0, 0, 1], dtype='int8'))\n",
148
+ " if list(nt) == [0, 0, 0, 1]:\n",
149
+ " mutagenesis_X[\"loc\"].append(mutloc)\n",
150
+ " mutagenesis_X[\"loc\"].append(mutloc)\n",
151
+ " mutagenesis_X[\"loc\"].append(mutloc)\n",
152
+ " mutagenesis_X[\"nuc_onehot\"].append(np.array([1, 0, 0, 0], dtype='int8'))\n",
153
+ " mutagenesis_X[\"nuc_onehot\"].append(np.array([0, 1, 0, 0], dtype='int8'))\n",
154
+ " mutagenesis_X[\"nuc_onehot\"].append(np.array([0, 0, 1, 0], dtype='int8'))\n",
155
+ " \n",
156
+ " mutagenesis_X[\"loc\"] = np.array(mutagenesis_X[\"loc\"])\n",
157
+ " mutagenesis_X[\"nuc_onehot\"] = np.array(mutagenesis_X[\"nuc_onehot\"])\n",
158
+ " return mutagenesis_X \n",
159
+ " \n",
160
+ "id_ = 35\n",
161
+ "start_x = np.copy(evolved_seq_6000_dict[\"X\"][id_])\n",
162
+ "all_possible_single_mutation_onehot = create_possible_single_mutations(start_x)['nuc_onehot']"
163
+ ]
164
+ },
165
+ {
166
+ "cell_type": "code",
167
+ "execution_count": null,
168
+ "id": "b0e96bf1-713e-4027-9397-6e0d40cde63c",
169
+ "metadata": {},
170
+ "outputs": [],
171
+ "source": [
172
+ "# import pickle\n",
173
+ "\n",
174
+ "# for out_of_27 in range(27):\n",
175
+ "# mutatated_seqs = np.zeros((20708500,500,4))\n",
176
+ "# for nuc_ in [nucleotide_combinations[out_of_27]]:\n",
177
+ "# for i,loc_ in enumerate(location_combinations):\n",
178
+ "# new_X = np.copy(start_x)\n",
179
+ "# for mut_index in range(3):\n",
180
+ "# new_X[loc_[mut_index],:] = all_possible_single_mutation_onehot[loc_[mut_index]*3 + nuc_[mut_index]]\n",
181
+ "# mutatated_seqs[i] = new_X\n",
182
+ "# pred_ = model_dict[\"DeepFlyBrain\"].predict(mutatated_seqs)\n",
183
+ " \n",
184
+ "# f = open(\"data/all_possible_3_mut/pred_\"+str(out_of_27+1)+\"_27.pkl\", \"wb\")\n",
185
+ "# pickle.dump(pred_, f ,protocol=4)\n",
186
+ "# f.close()"
187
+ ]
188
+ },
189
+ {
190
+ "cell_type": "code",
191
+ "execution_count": 5,
192
+ "id": "3fb96e65-3b56-43ca-851c-eaa1c2b229b4",
193
+ "metadata": {
194
+ "tags": []
195
+ },
196
+ "outputs": [],
197
+ "source": [
198
+ "preds = []\n",
199
+ "for i in range(27):\n",
200
+ " f = open(\".data/all_possible_3_mut/pred_\"+str(i)+\"_27.pkl\", \"rb\")\n",
201
+ " pred_ = pickle.load(f)\n",
202
+ " preds.append(pred_)\n",
203
+ " f.close()"
204
+ ]
205
+ },
206
+ {
207
+ "cell_type": "markdown",
208
+ "id": "2a53eaed-c3d9-4410-a061-f12d39180600",
209
+ "metadata": {},
210
+ "source": [
211
+ "### Number of sequences with higher prediction scores compared to sequence following the greedy search path"
212
+ ]
213
+ },
214
+ {
215
+ "cell_type": "code",
216
+ "execution_count": 7,
217
+ "id": "2082f178-1791-4379-9522-7d2b467e1fb9",
218
+ "metadata": {
219
+ "tags": []
220
+ },
221
+ "outputs": [
222
+ {
223
+ "data": {
224
+ "text/plain": [
225
+ "7"
226
+ ]
227
+ },
228
+ "execution_count": 7,
229
+ "metadata": {},
230
+ "output_type": "execute_result"
231
+ }
232
+ ],
233
+ "source": [
234
+ "np.sum(KC_pred>evolved_seq_6000_dict['mut_pred'][[35],3,34])"
235
+ ]
236
+ },
237
+ {
238
+ "cell_type": "markdown",
239
+ "id": "35b496a4-52cf-4e64-a9ab-0bae241e0a92",
240
+ "metadata": {},
241
+ "source": [
242
+ "### Plotting prediction score distribution of the generated sequences with all possible 3 mutations"
243
+ ]
244
+ },
245
+ {
246
+ "cell_type": "code",
247
+ "execution_count": 9,
248
+ "id": "24dd1748-4f32-45aa-bcd7-500878224cb2",
249
+ "metadata": {
250
+ "tags": []
251
+ },
252
+ "outputs": [
253
+ {
254
+ "data": {
255
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAAHUCAYAAAD7i/0VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABmUUlEQVR4nO3dd3wU1f7/8femJxACBNIgQOhNOkiR9gVBQIRrAa4oTREERECKUSFgIaKoiDRFCSJFUISLyKUpIAooLRaINEMRiIglEZDU8/uDH3tZUkhCNkt2X8/HYx+PnZkzM5+zk8zJJ+fMWYsxxggAAAAAnJibowMAAAAAAHsj8QEAAADg9Eh8AAAAADg9Eh8AAAAATo/EBwAAAIDTI/EBAAAA4PRIfAAAAAA4PRIfAAAAAE6PxAcAAACA0yPxgY2FCxfKYrFYXx4eHipfvrwGDhyo06dPF0oMlSpV0oABA6zLW7dulcVi0datW/N0nB07dmjy5Mn666+/Mm1r166d2rVrd1NxIrOsrtWAAQNUqVKlPB3nzJkzmjx5smJjYws0PgBFE20TbgZtE64i8UGWYmJitHPnTm3atEmDBw/WsmXL1Lp1a128eLHQY2nUqJF27typRo0a5Wm/HTt2aMqUKVk2LnPmzNGcOXMKKELkZOLEiVq1alWe9jlz5oymTJlC4wLABm0TCgptk2vycHQAuDXVrVtXTZo0kSS1b99e6enpeuGFF7R69Wr17ds3y30uXbokPz+/Ao+lRIkSat68eYEes3bt2gV6vKIkNTXV+h/TwlClSpVCOQ8A50fb5Lxom1AY6PFBrly9uZ84cULSlS7i4sWL64cfflCnTp3k7++vDh06SJJSUlL04osvqmbNmvL29lbZsmU1cOBA/fbbbzbHTE1N1fjx4xUSEiI/Pz/dcccd+vbbbzOdO7vhBN988426d++uwMBA+fj4qEqVKho1apQkafLkyRo3bpwkKSIiwjo84uoxshpO8Mcff2jYsGEqV66cvLy8VLlyZT377LNKTk62KWexWDRixAh98MEHqlWrlvz8/FS/fn2tXbv2hp9jRkaGXnzxRdWoUUO+vr4qWbKk6tWrpzfffNOm3E8//aR///vfCg4Olre3typUqKB+/frZxPLjjz+qR48eKlWqlHx8fNSgQQO9//77WX52H3zwgZ566imVK1dO3t7eOnr0qCRp8+bN6tChg0qUKCE/Pz+1atVKn3/++Q3rcTXGu+66S35+fipTpoyGDh2qv//+O1O5rIYTfPTRR7r99tsVEBAgPz8/Va5cWYMGDbLG3LRpU0nSwIEDrddu8uTJuYoLgOugbfof2qb/xUjbhOzQ44NcuXozKlu2rHVdSkqK7rnnHg0ZMkRPP/200tLSlJGRoR49emj79u0aP368WrZsqRMnTigqKkrt2rXTnj175OvrK0kaPHiwFi1apLFjx+rOO+/Ujz/+qHvvvTfLG9T1NmzYoO7du6tWrVp6/fXXVaFCBR0/flwbN26UJD366KP6448/9NZbb+mTTz5RaGiopOz/m3b58mW1b99ex44d05QpU1SvXj1t375d0dHRio2N1WeffWZT/rPPPtPu3bv1/PPPq3jx4nrllVf0r3/9S4cOHVLlypWzjfuVV17R5MmT9dxzz6lNmzZKTU3VTz/9ZDPk4bvvvtMdd9yhMmXK6Pnnn1e1atV09uxZrVmzRikpKfL29tahQ4fUsmVLBQUFaebMmQoMDNTixYs1YMAA/frrrxo/frzNeSMjI9WiRQvNmzdPbm5uCgoK0uLFi9WvXz/16NFD77//vjw9PfX222+rc+fO2rBhg/WPhaz8+uuvatu2rTw9PTVnzhwFBwdryZIlGjFiRI7XTZJ27typ3r17q3fv3po8ebJ8fHx04sQJffHFF5KuDB+JiYnRwIED9dxzz6lbt26SpPLly9/w2ABcC20TbdO1aJtwQwa4RkxMjJFkdu3aZVJTU83ff/9t1q5da8qWLWv8/f1NQkKCMcaY/v37G0lmwYIFNvsvW7bMSDIrV660Wb97924jycyZM8cYY0xcXJyRZEaPHm1TbsmSJUaS6d+/v3Xdli1bjCSzZcsW67oqVaqYKlWqmH/++Sfburz66qtGkomPj8+0rW3btqZt27bW5Xnz5hlJZsWKFTblpk2bZiSZjRs3WtdJMsHBwSYpKcm6LiEhwbi5uZno6Ohs4zHGmLvvvts0aNAgxzL/93//Z0qWLGnOnTuXbZk+ffoYb29vc/LkSZv1Xbp0MX5+fuavv/4yxvzvs2vTpo1NuYsXL5rSpUub7t2726xPT0839evXN82aNcsxxgkTJhiLxWJiY2Nt1t95552ZrlX//v1NxYoVrcvTp083kqwxZuXqz0tMTEyOcQBwDbRNtE20TSgIRWqo25dffqnu3bsrLCxMFotFq1evzvMxNmzYoObNm8vf319ly5bVfffdp/j4+IIPtohr3ry5PD095e/vr7vvvlshISH673//q+DgYJty9913n83y2rVrVbJkSXXv3l1paWnWV4MGDRQSEmLtzt+yZYskZRqT3atXrxuO7z18+LCOHTumRx55RD4+PjdZ0yu++OILFStWTPfff7/N+qsz+Fzfxd6+fXv5+/tbl4ODgxUUFGQdbpGdZs2a6bvvvtOwYcO0YcMGJSUl2Wy/dOmStm3bpl69etn8BzOreDt06KDw8PBM8V66dEk7d+60WX/9ddqxY4f++OMP9e/f3+Y6ZWRk6K677tLu3btzfFh4y5YtqlOnjurXr2+z/sEHH8yx/pKsQwV69eqlFStWFNqMTACKPtqmK2ibskbbhBspUonPxYsXVb9+fc2aNStf+//888/q0aOH/u///k+xsbHasGGDzp8/r3vvvbeAIy36Fi1apN27d2v//v06c+aMvv/+e7Vq1cqmjJ+fn0qUKGGz7tdff9Vff/0lLy8veXp62rwSEhJ0/vx5SdLvv/8uSQoJCbHZ38PDQ4GBgTnGdnU8dkF2L//+++8KCQmRxWKxWR8UFCQPDw9rvFdlFaO3t7f++eefHM8TGRmp6dOna9euXerSpYsCAwPVoUMH7dmzR5L0559/Kj09/YZ1+/33361DJK4VFhZm3X6t68v++uuvkqT7778/03WaNm2ajDH6448/cjz/9ddOynw9s9KmTRutXr1aaWlp6tevn8qXL6+6detq2bJlN9wXgGujbbqCtin789M2ISdF6hmfLl26qEuXLtluT0lJ0XPPPaclS5bor7/+Ut26dTVt2jTrg4L79u1Tenq6XnzxRbm5Xcn5xo4dqx49eig1NVWenp6FUY0ioVatWtaZc7Jz/Y1YksqUKaPAwECtX78+y32u/ifq6s05ISFB5cqVs25PS0vLdGO83tX/Nv3yyy85lsuLwMBAffPNNzLG2NTr3LlzSktLU5kyZQrkPB4eHhozZozGjBmjv/76S5s3b9Yzzzyjzp0769SpUypdurTc3d1vWLfAwECdPXs20/ozZ85IUqZ4r79WV7e/9dZb2c5KdP1/UK8/f0JCQqb1Wa3LSo8ePdSjRw8lJydr165dio6O1oMPPqhKlSqpRYsWuToGANdD23QFbVP256dtQk6KVI/PjQwcOFBff/21PvzwQ33//fd64IEHdNddd+nIkSOSpCZNmsjd3V0xMTFKT09XYmKiPvjgA3Xq1Imkp4Dcfffd+v3335Wenq4mTZpketWoUUOSrMnokiVLbPZfsWKF0tLScjxH9erVVaVKFS1YsCDTrDbX8vb2lqQb/qdLkjp06KALFy5kGj65aNEi6/aCVrJkSd1///0aPny4/vjjDx0/fly+vr5q27atPvroI+t/ILOL94svvrA2JtfG6+fnd8MpVlu1aqWSJUvq4MGDWV6nJk2ayMvLK9v927dvrwMHDui7776zWb906dJc1Px/vL291bZtW02bNk2StH//fut6KXfXDgBuhLYp92ibaJucWZHq8cnJsWPHtGzZMv3yyy/WLtWxY8dq/fr1iomJ0dSpU1WpUiVt3LhRDzzwgIYMGaL09HS1aNFC69atc3D0zqNPnz5asmSJunbtqieffFLNmjWTp6enfvnlF23ZskU9evTQv/71L9WqVUsPPfSQZsyYIU9PT3Xs2FE//vijpk+fnmmIQlZmz56t7t27q3nz5ho9erQqVKigkydPasOGDdYG67bbbpMkvfnmm+rfv788PT1Vo0YNm/HPV/Xr10+zZ89W//79dfz4cd1222366quvNHXqVHXt2lUdO3YskM+ne/fu1u+hKFu2rE6cOKEZM2aoYsWKqlatmiTp9ddf1x133KHbb79dTz/9tKpWrapff/1Va9as0dtvvy1/f39FRUVp7dq1at++vSZNmqTSpUtryZIl+uyzz/TKK68oICAgxziKFy+ut956S/3799cff/yh+++/X0FBQfrtt9/03Xff6bffftPcuXOz3X/UqFFasGCBunXrphdffNE6c85PP/10w89g0qRJ+uWXX9ShQweVL19ef/31l9588015enqqbdu2kq58v4Kvr6+WLFmiWrVqqXjx4goLC1NYWJgWLVqkQYMGacGCBerXr18ePn0Aroq2KWe0TbRNLsOxcyvknySzatUq6/KKFSuMJFOsWDGbl4eHh+nVq5cxxpizZ8+aatWqmXHjxpl9+/aZbdu2mbZt25oOHTqYjIwMB9Xk1nJ15pzdu3fnWK5///6mWLFiWW5LTU0106dPN/Xr1zc+Pj6mePHipmbNmmbIkCHmyJEj1nLJycnmqaeeMkFBQcbHx8c0b97c7Ny501SsWPGGM+cYY8zOnTtNly5dTEBAgPH29jZVqlTJNBNPZGSkCQsLM25ubjbHuH7mHGOM+f33383QoUNNaGio8fDwMBUrVjSRkZHm8uXLNuUkmeHDh2eq9/VxZ+W1114zLVu2NGXKlDFeXl6mQoUK5pFHHjHHjx+3KXfw4EHzwAMPmMDAQGu5AQMG2MTyww8/mO7du5uAgADj5eVl6tevn2mmmauf3UcffZRlPNu2bTPdunUzpUuXNp6enqZcuXKmW7du2Za/PsY777zT+Pj4mNKlS5tHHnnE/Oc//7nhzDlr1641Xbp0MeXKlTNeXl4mKCjIdO3a1Wzfvt3m+MuWLTM1a9Y0np6eRpKJiooyxvzvZ5RZdQDXQdtE20TbhIJgMcaYwk62CoLFYtGqVavUs2dPSdLy5cvVt29fHThwQO7u7jZlixcvrpCQEE2cOFH//e9/rQ/rSVfG4oaHh2vnzp0F/g3MAAAAAG4NTjPUrWHDhkpPT9e5c+fUunXrLMtcunQpU1J0dTkjI8PuMQIAAABwjCI1ucGFCxcUGxur2NhYSVJ8fLxiY2N18uRJVa9eXX379lW/fv30ySefKD4+Xrt379a0adOsz/B069bN+o3GR44c0b59+zRw4EBVrFhRDRs2dGDNAAAAANhTkRrqtnXrVrVv3z7T+v79+2vhwoVKTU3Viy++qEWLFun06dMKDAxUixYtNGXKFOvDhB9++KFeeeUVHT58WH5+fmrRooWmTZummjVrFnZ1AAAAABSSIpX4AAAAAEB+FKmhbgAAAACQHyQ+AAAAAJxekZjVLSMjQ2fOnJG/v78sFoujwwEAl2GM0d9//62wsDC5ufG/smvRNgGAY+S3bSoSic+ZM2cUHh7u6DAAwGWdOnVK5cuXd3QYtxTaJgBwrLy2TUUi8fH395d0pXIlSpS4qWNlZGTo1KlTkqTw8HD+gwm4gEspaWr20ueSpG+f7SA/ryJx67slJCUlKTw83Hofxv8UZNsEuDLu0cir/LZNReIn6+oQghIlStx043Lx4kXVq1dP0pXvBSpWrNhNxwfg1uaRkiY3bz9JV+4jNKp5x1CuzAqybQJcGfdo5Fde2ya6OwAAAAA4PRIfAAAAAE6PxAcAAACA02MQJXItPT1dqampjg4DyLPklDSV83e/8v7yZbllcOu7yt3dXR4eHjzDAwBwerT+yJULFy7ol19+kTHG0aEAeZZhjCa3D5IknfnlpNz4I9+Gn5+fQkND5eXl5ehQAACwGxIf3FB6erp++eUX+fn5qWzZsvxnGEVOeoZR2rm/JUmVgvzl7sbPsHTlC+BSUlL022+/KT4+XtWqVWOKfwCA03K5xMfDw0PDhg2zvseNpaamyhijsmXLytfX19HhAHmWnmFk8UiWJPn4+JD4XMPX11eenp46ceKEUlJS5OPj4+iQAACwC5f7y9/b21uzZ892dBhFEj09gHOilwcA4Apo7QAAAAA4PZfr8THG6Pz585KkMmXK0IsBAAAAuACX6/G5dOmSgoKCFBQUpEuXLjk6HLigyZMnq0GDBo4Oo8ANGDBAPXv2zNe+bdq00dKlSws2oFtUpUqVNGPGjEI739ixYzVy5MhCOx8AALcql0t84FoSEhL05JNPqmrVqvLx8VFwcLDuuOMOzZs3j8T3FrF27VolJCSoT58+1nVDhgxRlSpV5Ovrq7Jly6pHjx766aefHBJffhPVhQsXqmTJkpnW7969W4899tjNB5ZL48ePV0xMjOLj4wvtnLeCL7/8Ut27d1dYWJgsFotWr16dqUxcXJzuueceBQQEyN/fX82bN9fJkycLP1gAQKEg8YHT+vnnn9WwYUNt3LhRU6dO1f79+7V582aNHj1an376qTZv3pztvnxRq62UlBS7HXvmzJkaOHCgzQP2jRs3VkxMjOLi4rRhwwYZY9SpUyelp6fbLY7CUrZsWfn5+RXa+YKCgtSpUyfNmzev0M55K7h48aLq16+vWbNmZbn92LFjuuOOO1SzZk1t3bpV3333nSZOnMisdgDgzEwRkJiYaCSZxMTEmz7WhQsXjCQjyVy4cKEAonN+//zzjzl48KD5559/jDHGZGRkmIvJqQ55ZWRk5Druzp07m/Lly2d7na89liQzd+5cc8899xg/Pz8zadIkY4wxa9asMY0aNTLe3t4mIiLCTJ482aSmplr3++uvv8zgwYNN2bJljb+/v2nfvr2JjY21OU90dLQJCgoyxYsXN4MGDTITJkww9evXN8YYs23bNuPh4WHOnj1rs8+YMWNM69ats61bVFSUCQ8PN15eXiY0NNQ88cQT1m3Jyclm3LhxJiwszPj5+ZlmzZqZLVu2WLefP3/e9OnTx5QrV874+vqaunXrmqVLl9ocv23btmb48OFm9OjRJjAw0LRp08YYY8yPP/5ounbtavz9/U3x4sXNHXfcYY4ePWqMMaZ///6mR48e5tVXXzUhISGmdOnSZtiwYSYlJSXbevz222/GYrGYH3/8Mdsyxhjz3XffGUnWc2Wlbdu2ZsSIEebJJ580JUuWNEFBQebtt982Fy5cMP37DzB+xYqb8hUqmU/XfmbdJyYmxgQEBNgcZ9WqVebqrTEmJsZ6v7j6iomJMcYY89prr5m6desaPz8/U758efP444+bv//+2xhjzJYtWzLtFxUVZYwxpmLFiuaNN96wnu/EiRPmnnvuMcWKFTP+/v7mgQceMAkJCdbtUVFRpn79+mbRokWmYsWKpkSJEqZ3794mKSnJWuajjz4ydevWNT4+PqZ06dKmQ4cONj/3CxcuNOHh4dl+dtf/jl+rIO+/jiLJrFq1ymZd7969zUMPPXRTx3WGzwa4FVxMTjUVJ6w1FSesNReTU2+8A1xefu+/Lje5AW7eP6npqj1pg0POffD5zvLzuvGP7e+//27t6SlWrFiWZa6f2CIqKkrR0dF644035O7urg0bNuihhx7SzJkz1bp1ax07dsw6RCkqKkrGGHXr1k2lS5fWunXrFBAQoLffflsdOnTQ4cOHVbp0aa1YsUJRUVGaPXu2WrdurQ8++EAzZ85U5cqVJV15tqVy5cr64IMPNG7cOElSWlqaFi9erJdffjnLuD/++GO98cYb+vDDD1WnTh0lJCTou+++s24fOHCgjh8/rg8//FBhYWFatWqV7rrrLv3www+qVq2aLl++rMaNG2vChAkqUaKEPvvsMz388MOqXLmybr/9dutx3n//fT3++OP6+uuvZYzR6dOn1aZNG7Vr105ffPGFSpQooa+//lppaWnWfbZs2aLQ0FBt2bJFR48eVe/evdWgQQMNHjw4y7p89dVX8vPzU61atbK9lhcvXlRMTIwiIiIUHh6ebbmrMY8fP17ffvutli9frscff1yrV69Wjx49dd8jI7R4/hwN6N9PJ0+ezFWvS+/evfXjjz9q/fr11h7CgIAASVemgJ45c6YqVaqk+Ph4DRs2TOPHj9ecOXPUsmVLzZgxQ5MmTdKhQ4ckScWLF890fGOMevbsqWLFimnbtm1KS0vTsGHD1Lt3b23dutVa7tixY1q9erXWrl2rP//8U7169dLLL7+sl156SWfPntW///1vvfLKK/rXv/6lv//+W9u3b5cxxrp/s2bNdOrUKZ04cUIVK1a8Yb2dXUZGhj777DONHz9enTt31v79+xUREaHIyMgcn1NLTk5WcnKydTkpKakQogUAFBSXSXymTJkiyb5DdnDrOHr0qIwxqlGjhs36MmXK6PLly5Kk4cOHa9q0adZtDz74oAYNGmRdfvjhh/X000+rf//+kqTKlSvrhRde0Pjx4xUVFaUtW7bohx9+0Llz5+Tt7S1Jmj59ulavXq2PP/5Yjz32mGbMmKFBgwbp0UcflSS9+OKL2rx5szUGSXrkkUcUExNjTXw+++wzXbp0Sb169cqybidPnlRISIg6duwoT09PVahQQc2aNZN05Q/kZcuW6ZdfflFYWJikKw+3r1+/XjExMZo6darKlSunsWPHWo/3xBNPaP369froo49sEp+qVavqlVdesS4/88wzCggI0IcffihPT09JUvXq1W1iK1WqlGbNmiV3d3fVrFlT3bp10+eff55t4nP8+HEFBwdn+T0yc+bM0fjx43Xx4kXVrFlTmzZtkpeXV5bHuap+/fp67rnnJEmRkZF6+eWXVaZMGT06eLAOnEnUkFHjteKDBfr+++/VvHnzHI8lXflyz+LFi8vDw0MhISE220aNGmV9HxERoRdeeEGPP/645syZIy8vLwUEBMhisWTa71qbN2/W999/r/j4eGtS98EHH6hOnTravXu3mjZtKunKH+oLFy6Uv7+/pCs/m59//rk18UlLS9O9995rTWpuu+02m/OUK1dO0pXPm8RHOnfunC5cuKCXX35ZL774oqZNm6b169fr3nvv1ZYtW9S2bdss94uOjra2JfZw7bGjoqLsdh4AcFUuk/ig4Ph6uuvg850ddu68uL5X59tvv1VGRob69u1r859bSWrSpInN8t69e7V792699NJL1nXp6em6fPmyLl26pL179+rChQsKDAy02e+ff/7RsWPHJF15eHro0KE221u0aKEtW7ZYlwcMGKDnnntOu3btUvPmzbVgwQL16tUr256qBx54QDNmzFDlypV11113qWvXrurevbs8PDy0b98+GWMyJSTJycnWONPT0/Xyyy9r+fLlOn36tPW/2Nef7/rPIzY2Vq1bt7YmPVmpU6eO3N3/d41CQ0P1ww8/ZFv+n3/+yfaZir59++rOO+/U2bNnNX36dPXq1Utff/11js9g1KtXz/re3d1dgYGBNklAYNkgSVf+8L1ZW7Zs0dSpU3Xw4EElJSUpLS1Nly9f1sWLF7O9dteLi4tTeHi4TU9W7dq1VbJkScXFxVkTn0qVKlmTHunK53q1DvXr11eHDh102223qXPnzurUqZPuv/9+lSpVylre19dXkpjQ4//LyMiQJPXo0UOjR4+WJDVo0EA7duzQvHnzsk18IiMjNWbMGOtyUlLSDXshAQC3DpdLfNzc3Kz/wffwcLnqFwiLxZKr4WaOVLVqVVkslkwzgV0dYnb1D8FrXf/HakZGhqZMmaJ77703U1kfHx9lZGQoNDTUZkjSVVnN5pWdoKAgde/eXTExMapcubLWrVuX5TGvCg8P16FDh7Rp0yZt3rxZw4YN06uvvqpt27YpIyND7u7u2rt3r00CIv1vqNVrr72mN954QzNmzNBtt92mYsWKadSoUZl6Q6//PLL6zK53fVJksVisf2RmpUyZMvrzzz+z3BYQEKCAgABVq1ZNzZs3V6lSpbRq1Sr9+9//ztP5r113NRG+GpObm5vNkDApdxNbnDhxQl27dtXQoUP1wgsvqHTp0vrqq6/0yCOP5GliDGNMlt8ldv36nD5Xd3d3bdq0STt27NDGjRv11ltv6dlnn9U333yjiIgISdIff/wh6crECrjyc+fh4aHatWvbrK9Vq5a++uqrbPfz9va29u4CAIqeW/uvVzvw8PDQwoULHR0G7CwwMFB33nmnZs2apSeeeCLX/4G/VqNGjXTo0CFVrVo12+0JCQny8PBQpUqVsixTq1Yt7dq1S/369bOu27VrV6Zyjz76qPr06aPy5curSpUqatWqVY6x+fr66p577tE999yj4cOHq2bNmvrhhx/UsGFDpaen69y5c2rdunWW+27fvl09evTQQw89JOlKEnDkyJEcn7ORrvSmvP/++0pNTc2x1ycvGjZsqISEBP355582PRRZMcZk6qW7WWXLltXff/9t00sTGxtrU8bLyyvTbHJ79uxRWlqaXnvtNeswvRUrVtxwv+vVrl1bJ0+e1KlTp6w9BwcPHlRiYuINr8e1LBaLWrVqpVatWmnSpEmqWLGiVq1aZe2d+PHHH+Xp6ak6derk+pjOzMvLS02bNrU+f3XV4cOHGQoIAE6M6azhtObMmaO0tDQ1adJEy5cvV1xcnA4dOqTFixfrp59+ytQjcr1JkyZp0aJFmjx5sg4cOKC4uDgtX77c+gxJx44d1aJFC/Xs2VMbNmzQ8ePHtWPHDj333HPas2ePJOnJJ5/UggULtGDBAh0+fFhRUVE6cOBApnN17txZAQEBevHFFzVw4MAc41q4cKHee+89/fjjj/r555/1wQcfyNfXVxUrVlT16tXVt29f9evXT5988oni4+O1e/duTZs2TevWrZN0pTfsag9BXFychgwZooSEhBt+niNGjFBSUpL69OmjPXv26MiRI/rggw8y/fGYFw0bNlTZsmX19ddfW9f9/PPPio6O1t69e3Xy5Ent3LlTvXr1kq+vr7p27Zrvc2Xl9ttvl5+fn5555hkdPXpUS5cuzfSPkauTF8TGxur8+fNKTk5WlSpVlJaWprfeest6Da6fLrpSpUq6cOGCPv/8c50/fz7LYWYdO3ZUvXr11LdvX+3bt0/ffvut+vXrp7Zt22Yaapidb775RlOnTtWePXt08uRJffLJJ/rtt99sEqft27erdevWueq1cxYXLlxQbGysNZG9eg2vfk/PuHHjtHz5cs2fP19Hjx7VrFmz9Omnn2rYsGEOjBoAYE8ul/gYY3Tx4kVdvHgx0xAXOJcqVapo//796tixoyIjI1W/fn01adJEb731lsaOHasXXnghx/07d+6stWvXatOmTWratKmaN2+u119/3fofYYvFonXr1qlNmzYaNGiQqlevrj59+lgf2JeuzAo2adIkTZgwQY0bN9aJEyf0+OOPZzqXm5ubBgwYoPT0dJveoayULFlS8+fPV6tWrVSvXj19/vnn+vTTT63P8MTExKhfv3566qmnVKNGDd1zzz365ptvrD0KEydOVKNGjdS5c2e1a9dOISEhOc5kdVVgYKC++OILXbhwQW3btlXjxo01f/78m+r9cXd316BBg7RkyRLrOh8fH23fvl1du3ZV1apVrc877dixQ0FBQfk+V1ZKly6txYsXa926dbrtttu0bNkyTZ482abMfffdp7vuukvt27dX2bJltWzZMjVo0ECvv/66pk2bprp162rJkiWKjo622a9ly5YaOnSoevfurbJly9pMFHHV1S/WLFWqlNq0aaOOHTuqcuXKWr58ea7rUKJECX355Zfq2rWrqlevrueee06vvfaaunTpYi2zbNmybCeYcFZ79uxRw4YN1bBhQ0nSmDFj1LBhQ02aNEmS9K9//Uvz5s3TK6+8ottuu03vvvuuVq5cqTvuuMORYQMA7MhiisBf/0lJSQoICFBiYqJKlCiRr2NcO6vb1KlTJV35j2B+hkC5msuXLys+Pl4RERF8uZ8dDR48WL/++qvWrFnj6FAK1a+//qo6depo7969dhtmlJ5hdOBMoiSpTliA3N0yP1fjrD777DONGzdO33//fbbPNeb0O14Q919nVdCfDbO6wVVdSkmzfk1Gbr+2Aq4tv/dffrIAB0tMTNTu3bu1ZMkS/ec//3F0OIUuODhY7733nk6ePMnzFXZw9XuQmMwFAODqXLolnDp1qs1UxYAj9OjRQ99++62GDBmiO++809HhOESPHj0cHYLTyu77oAAAcDUunfgAt4Kcpq4GAABAwXC5yQ0AAAAAuB4SHwAAAABOj8QHAAAAgNNzuWd8LBaLateubX0PAAAAwPm5XOLj6enJLEcAAACAi2GoGwAAAACnR+ID2EmlSpU0Y8YMR4cBAAAAuWDik5KSosmTJ2vy5MlKSUlxdDiwowEDBshischiscjDw0MVKlTQ448/rj///NPRoQEAAKCQuVziA9dy11136ezZszp+/Ljeffddffrppxo2bJijwwIAAEAhI/FBvl28eDHb1+XLl3Nd9p9//slV2fzw9vZWSEiIypcvr06dOql3797auHGjdXt6eroeeeQRRUREyNfXVzVq1NCbb75pc4wBAwaoZ8+emj59ukJDQxUYGKjhw4crNTXVWubcuXPq3r27fH19FRERoSVLlmSK5eTJk+rRo4eKFy+uEiVKqFevXvr111+t2ydPnqwGDRpowYIFqlChgooXL67HH39c6enpeuWVVxQSEqKgoCC99NJLOdZ569atatasmYoVK6aSJUuqVatWOnHihHX7p59+qsaNG8vHx0eVK1fWlClTlJaWZt1+5MgRtWnTRj4+Pqpdu7Y2bdoki8Wi1atXW49vsVj0119/WfeJjY2VxWLR8ePHret27NihNm3ayNfXV+Hh4Ro5cqTNdaxUqZKmTp2qQYMGyd/fXxUqVNA777xjU5dffvlFffr0UenSpVWsWDE1adJE33zzTa7rAgAAcJXLzeqGglO8ePFst3Xt2lWfffaZdTkoKEiXLl3Ksmzbtm21detW63KlSpV0/vz5TOWMMfkPVtLPP/+s9evXy9PT07ouIyND5cuX14oVK1SmTBnt2LFDjz32mEJDQ21m/9uyZYtCQ0O1ZcsWHT16VL1791aDBg00ePBgSVeSo1OnTumLL76Ql5eXRo4cqXPnztnE3rNnTxUrVkzbtm1TWlqahg0bpt69e9vU/dixY/rvf/+r9evX69ixY7r//vsVHx+v6tWra9u2bdqxY4cGDRqkDh06qHnz5pnqmJaWpp49e2rw4MFatmyZUlJS9O2331qnbt+wYYMeeughzZw5U61bt9axY8f02GOPSZKioqKUkZGhe++9V2XKlNGuXbuUlJSkUaNG5fmz/uGHH9S5c2e98MILeu+99/Tbb79pxIgRGjFihGJiYqzlXnvtNb3wwgt65pln9PHHH+vxxx9XmzZtVLNmTV24cEFt27ZVuXLltGbNGoWEhGjfvn3KyMjIVV0AAACuReIDp7Z27VoVL15c6enp1l6o119/3brd09NTU6ZMsS5HRERox44dWrFihU3iU6pUKc2aNUvu7u6qWbOmunXrps8//1yDBw/W4cOH9d///le7du3S7bffLkl67733VKtWLev+mzdv1vfff6/4+HiFh4dLkj744APVqVNHu3fvVtOmTSVdScQWLFggf39/1a5dW+3bt9ehQ4e0bt06ubm5qUaNGpo2bZq2bt2aZeKTlJSkxMRE3X333apSpYok2cTx0ksv6emnn1b//v0lSZUrV9YLL7yg8ePHKyoqSps3b1ZcXJyOHz+u8uXLS5KmTp2qLl265Olzf/XVV/Xggw9ak6Zq1app5syZatu2rebOnSsfHx9JVxLkq0MPJ0yYoDfeeENbt25VzZo1tXTpUv3222/avXu3SpcuLUmqWrVqrusCAABwLRIf5NuFCxey3ebu7m6zfG3vx/Xc3GxHXF47XOpmtW/fXnPnztWlS5f07rvv6vDhw3riiSdsysybN0/vvvuuTpw4oX/++UcpKSlq0KCBTZk6derY1Ck0NFQ//PCDJCkuLk4eHh5q0qSJdXvNmjVVsmRJ63JcXJzCw8OtSY8k1a5dWyVLllRcXJw18alUqZL8/f2tZYKDg+Xu7m7zGQUHB2f7eZYuXVoDBgxQ586ddeedd6pjx47q1auXQkNDJUl79+7V7t27bYbLXU0KL126pLi4OFWoUMGa9EhSixYtsv5wc7B3714dPXrUZsifMUYZGRmKj4+3JmP16tWzbrdYLAoJCbHWLTY2Vg0bNrQmPVmdI6e6+Pn55TluAADgvEh8kG/FihVzeNncHOtqL8HMmTPVvn17TZkyRS+88IIkacWKFRo9erRee+01tWjRQv7+/nr11VdtniORZDM8TrryR/rVIVdXh+BdHU6WFWNMltuvX5/VeXI6d1ZiYmI0cuRIrV+/XsuXL9dzzz2nTZs2qXnz5srIyNCUKVN07733ZtrPx8cny+GE18d9NQm7tuy1zztJV3quhgwZopEjR2Y6XoUKFazvc6qbr69vtnW8eo6c6gIAAHAtl0t8LBaLqlWrZn0P1xIVFaUuXbro8ccfV1hYmLZv366WLVvazPR27NixPB2zVq1aSktL0549e9SsWTNJ0qFDh2we/q9du7ZOnjypU6dOWXt9Dh48qMTERJuhaAWlYcOGatiwoSIjI9WiRQstXbpUzZs3V6NGjXTo0CGbIWPXuhrnmTNnFBYWJknauXOnTZmyZctKks6ePatSpUpJutI7c61GjRrpwIED2Z4nN+rVq6d3331Xf/zxR5a9PjeqCwAAwLVcblY3T09P9e3bV3379s3032Y4v3bt2qlOnTqaOnWqpCvPjOzZs0cbNmzQ4cOHNXHiRO3evTtPx6xRo4buuusuDR48WN9884327t2rRx991KbHomPHjqpXr5769u2rffv26dtvv1W/fv3Utm1bmyFyNys+Pl6RkZHauXOnTpw4oY0bN+rw4cPW5GrSpElatGiRJk+erAMHDiguLs7aK3Q1zho1aqhfv3767rvvtH37dj377LM256hatarCw8M1efJkHT58WJ999plee+01mzITJkzQzp07NXz4cMXGxurIkSNas2ZNpmGGOfn3v/+tkJAQ9ezZU19//bV+/vlnrVy50pqI3aguAAAA13K5xAcYM2aM5s+fr1OnTmno0KG699571bt3b91+++36/fff8/U9PzExMQoPD1fbtm1177336rHHHlNQUJB1+9XpoEuVKqU2bdqoY8eOqly5spYvX16QVZOfn59++ukn3Xfffapevboee+wxjRgxQkOGDJEkde7cWWvXrtWmTZvUtGlTNW/eXK+//roqVqwo6cowtlWrVik5OVnNmjXTo48+mmn6bE9PTy1btkw//fST6tevr2nTpunFF1+0KVOvXj1t27ZNR44cUevWrdWwYUNNnDjR+qxRbnh5eWnjxo0KCgpS165dddttt+nll1+2Pmt1o7oAAABcy2Judo7gQpCUlKSAgAAlJiaqRIkS+TrGtTN3XYvZn27s8uXLio+PV0REBM9OuCiLxaJVq1apZ8+ejg4lX9IzjA6cSZQk1QkLkLsbw1yvldPveEHcf51VQX8217ZTtE1wJZdS0lR70gZJ0sHnO8vPy+WexEAe5ff+63I/WSkpKXr11VclSePGjXNwNAAAAAAKg8slPlLmGagAAAAAODeXTHwA5E0RGBELAACQIyY3AAAAAOD0SHyQa/zXH3BO/G4DAFwBiQ9u6Or0wSkpKQ6OBIA9XLp0SZL4bjMAgFPjGR/ckIeHh/z8/PTbb7/J09NTbm7kyyha0jOMTNqVxP3y5ctMZ/3/GWN06dIlnTt3TiVLlrT+kwMAAGfkcomPxWKxfsGhxcIfP7lhsVgUGhqq+Ph4nThxwtHhAHmWYYzO/XVZkuRxyUdu/O7bKFmypEJCQhwdBgAAdpWnxCc6OlqffPKJfvrpJ/n6+qply5aaNm2aatSokeN+27Zt05gxY3TgwAGFhYVp/PjxGjp06E0Fnl+enp4aOHCgQ85dlHl5ealatWoMd0OR9E9Kmh5b9ZUkae0Td8iXL8ez8vT0pKcHAOAS8tT6b9u2TcOHD1fTpk2VlpamZ599Vp06ddLBgwdVrFixLPeJj49X165dNXjwYC1evFhff/21hg0bprJly+q+++4rkEqgcLi5uWX6VnegKMhwS9Ppv9MlSd4+PvIh8QEAwOXkqfVfv369zXJMTIyCgoK0d+9etWnTJst95s2bpwoVKmjGjBmSpFq1amnPnj2aPn06iQ8AAACAQnFT//ZMTEyUJJUuXTrbMjt37lSnTp1s1nXu3FnvvfeeUlNTs5xFKDk5WcnJydblpKSkmwnTRkpKijUJGzVqVIEdFwAAAMCtK9/TcxljNGbMGN1xxx2qW7dutuUSEhIUHBxssy44OFhpaWk6f/58lvtER0crICDA+goPD89vmFm6dOmSdfpWAAAAAM4v34nPiBEj9P3332vZsmU3LHv97GlXvywvu1nVIiMjlZiYaH2dOnUqv2ECAAAAQP4SnyeeeEJr1qzRli1bVL58+RzLhoSEKCEhwWbduXPn5OHhocDAwCz38fb2VokSJWxeAADk1pdffqnu3bsrLCxMFotFq1evzrbskCFDZLFYrMOgAQDOKU+JjzFGI0aM0CeffKIvvvhCERERN9ynRYsW2rRpk826jRs3qkmTJnxLOADALi5evKj69etr1qxZOZZbvXq1vvnmG4WFhRVSZAAAR8nT5AbDhw/X0qVL9Z///Ef+/v7WnpyAgAD5+vpKujJM7fTp01q0aJEkaejQoZo1a5bGjBmjwYMHa+fOnXrvvfdyNUQOAID86NKli7p06ZJjmdOnT2vEiBHasGGDunXrVkiRAQAcJU+Jz9y5cyVJ7dq1s1kfExOjAQMGSJLOnj2rkydPWrdFRERo3bp1Gj16tGbPnq2wsDDNnDmTqawBAA6TkZGhhx9+WOPGjVOdOnVytY89ZxwFANhfnhKfq5MS5GThwoWZ1rVt21b79u3Ly6nsxmKxWIc0ZDe5AgDAuU2bNk0eHh4aOXJkrveJjo7WlClT7BgVAMCeXO7ryz09PfXYY485OgwAgIPs3btXb775pvbt25enf4BFRkZqzJgx1uWkpKQC/7oFAID95Hs6awAAiqLt27fr3LlzqlChgjw8POTh4aETJ07oqaeeUqVKlbLdjxlHAaBoc7keHwCAa3v44YfVsWNHm3WdO3fWww8/rIEDBzooKgCAvblc4pOSkqLZs2dLujJLHQDA+Vy4cEFHjx61LsfHxys2NlalS5dWhQoVMn2PnKenp0JCQlSjRo3CDhUAUEhcLvGRpMTEREeHAACwoz179qh9+/bW5avP5vTv3z/LSXgAAM7PJRMfAIBza9euXa5mIr3q+PHj9gsGAHBLYHIDAAAAAE6PxAcAAACA0yPxAQAAAOD0SHwAAAAAOD2XnNygbNmyjg4BAAAAQCFyucTHy8uL7+8BAAAAXAxD3QAAAAA4PRIfAAAAAE7P5Ya6paSkaP78+ZKkwYMHOzgaAAAAAIXB5RIfSfrtt98cHQIAAACAQsRQNwAAAABOj8QHAAAAgNMj8QEAAADg9Eh8AAAAADg9Eh8AAAAATs8lZ3ULCAhwdAgAAAAACpHLJT5eXl4aPXq0o8MAAAAAUIgY6gYAAADA6ZH4AAAAAHB6LjfULTU1VTExMZKkgQMHOjgaAAAAAIXB5RIfY4zOnDljfQ8AAADA+THUDQAAAIDTI/EBAAAA4PRIfAAAAAA4PRIfAAAAAE6PxAcAAACA03O5Wd0kyc/Pz9EhAAAAAChELpf4eHl5afz48Y4OAwAAAEAhYqgbAAAAAKdH4gMAAADA6bncULfU1FQtXrxYkvTQQw85OBoAAAAAhcHlEh9jjE6cOGF9DwAAAMD5MdQNAAAAgNMj8QEAAADg9Eh8AAAAADg9Eh8AgNP58ssv1b17d4WFhclisWj16tXWbampqZowYYJuu+02FStWTGFhYerXr5/OnDnjuIABAHZH4gMAcDoXL15U/fr1NWvWrEzbLl26pH379mnixInat2+fPvnkEx0+fFj33HOPAyIFABQWl5vVTZI8PT0dHQIAwI66dOmiLl26ZLktICBAmzZtsln31ltvqVmzZjp58qQqVKhQGCECAAqZyyU+Xl5eevbZZx0dBgDgFpKYmCiLxaKSJUtmWyY5OVnJycnW5aSkpEKIDABQUBjqBgBwaZcvX9bTTz+tBx98UCVKlMi2XHR0tAICAqyv8PDwQowSAHCzSHwAAC4rNTVVffr0UUZGhubMmZNj2cjISCUmJlpfp06dKqQoAQAFweWGuqWmpmrFihWSpF69ejk4GgCAo6SmpqpXr16Kj4/XF198kWNvjyR5e3vL29u7kKIDABQ0l0t8jDE6cuSI9T0AwPVcTXqOHDmiLVu2KDAw0NEhAQDszOUSHwCA87tw4YKOHj1qXY6Pj1dsbKxKly6tsLAw3X///dq3b5/Wrl2r9PR0JSQkSJJKly4tLy8vR4UNALAjEh8AgNPZs2eP2rdvb10eM2aMJKl///6aPHmy1qxZI0lq0KCBzX5btmxRu3btCitMAEAhIvEBADiddu3a5TicmaHOAOB6mNUNAAAAgNMj8QEAAADg9Eh8AAAAADg9l3vGx8vLS5MnT3Z0GAAAAAAKET0+AAAAAJweiQ8AAAAAp+dyQ91SU1O1atUqSdK//vUvB0cDAAAAoDC4XI+PMUYHDx7UwYMH+R4HAAAAwEW4XOIDAAAAwPWQ+AAAAABweiQ+AAAAAJweiQ8AAAAAp0fiAwAAAMDpkfgAAAAAcHou9z0+np6eeuaZZ6zvAQAAADg/l0t8LBaLvLy8HB0GAAAAgELEUDcAAAAATs/lenzS0tL06aefSpK6d+/u4GgAAAAAFAaX6/HJyMjQd999p++++04ZGRmODgcAAABAIchz4vPll1+qe/fuCgsLk8Vi0erVq3Msv3XrVlkslkyvn376Kb8xAwAAAECe5Hmo28WLF1W/fn0NHDhQ9913X673O3TokEqUKGFdLlu2bF5PDQAAAAD5kufEp0uXLurSpUueTxQUFKSSJUvmeT8AAAAAuFmF9oxPw4YNFRoaqg4dOmjLli05lk1OTlZSUpLNCwAAAADyy+6JT2hoqN555x2tXLlSn3zyiWrUqKEOHTroyy+/zHaf6OhoBQQEWF/h4eH2DhMAAACAE7P7dNY1atRQjRo1rMstWrTQqVOnNH36dLVp0ybLfSIjIzVmzBjrclJSEskPAAAAgHxzyPf4NG/eXIsXL852u7e3t7y9ve1ybk9PT40bN876HgAAAIDzc0jis3//foWGhjri1LJYLCpWrJhDzg0AAADAMfKc+Fy4cEFHjx61LsfHxys2NlalS5dWhQoVFBkZqdOnT2vRokWSpBkzZqhSpUqqU6eOUlJStHjxYq1cuVIrV64suFoAAAAAQA7ynPjs2bNH7du3ty5ffRanf//+Wrhwoc6ePauTJ09at6ekpGjs2LE6ffq0fH19VadOHX322Wfq2rVrAYSfd2lpadqwYYMkqXPnzg6JAQAAAEDhynPi065dOxljst2+cOFCm+Xx48dr/PjxeQ7MXjIyMrR7925J0p133ungaAAAAAAUhkL7Hh8AAAAAcBQSHwAAAABOj8QHAAAAgNMj8QEAAADg9Eh8AAAAADg9Eh8AgNP58ssv1b17d4WFhclisWj16tU2240xmjx5ssLCwuTr66t27drpwIEDjgkWAFAoXC7x8fDw0JNPPqknn3xSHh55ns0bAFAEXLx4UfXr19esWbOy3P7KK6/o9ddf16xZs7R7926FhITozjvv1N9//13IkQIACovL/eXv5uamUqVKOToMAIAddenSRV26dMlymzFGM2bM0LPPPqt7771XkvT+++8rODhYS5cu1ZAhQwozVABAIXG5Hh8AgGuLj49XQkKCOnXqZF3n7e2ttm3baseOHdnul5ycrKSkJJsXAKDocLnEJy0tTRs3btTGjRuVlpbm6HAAAIUsISFBkhQcHGyzPjg42LotK9HR0QoICLC+wsPD7RonAKBguVzik5GRoR07dmjHjh3KyMhwdDgAAAexWCw2y8aYTOuuFRkZqcTEROvr1KlT9g4RAFCAXO4ZHwCAawsJCZF0pecnNDTUuv7cuXOZeoGu5e3tLW9vb7vHBwCwD5fr8QEAuLaIiAiFhIRo06ZN1nUpKSnatm2bWrZs6cDIAAD2RI8PAMDpXLhwQUePHrUux8fHKzY2VqVLl1aFChU0atQoTZ06VdWqVVO1atU0depU+fn56cEHH3Rg1AAAeyLxAQA4nT179qh9+/bW5TFjxkiS+vfvr4ULF2r8+PH6559/NGzYMP3555+6/fbbtXHjRvn7+zsqZACAnZH4AACcTrt27WSMyXa7xWLR5MmTNXny5MILCgDgUDzjAwAAAMDpuVyPj4eHh4YNG2Z9DwAAAMD5udxf/m5ubgoKCnJ0GAAAAAAKEUPdAAAAADg9l+vxSUtL0/bt2yVJrVu3dnA0AAAAAAqDyyU+GRkZ2rZtmySpVatWDo4GAAAAQGFgqBsAAAAAp0fiAwAAAMDpkfgAAAAAcHokPgAAAACcHokPAAAAAKdH4gMAAADA6bncdNYeHh4aPHiw9T0AAAAA5+dyf/m7ubmpXLlyjg4DAAAAQCFiqBsAAAAAp+dyPT5paWn65ptvJEm33367g6MBACBnU6ZMsb6PiopyYCQAULS5XOKTkZGhTZs2SZKaNm3q4GgAAAAAFAaGugEAAABweiQ+AAAAAJweiQ8AAAAAp0fiAwAAAMDpkfgAAAAAcHokPgAAAACcnstNZ+3h4aH+/ftb3wMAAABwfi73l7+bm5siIiIcHQYAAACAQsRQNwAAAABOz+V6fNLT07V3715JUuPGjR0cDQAAAIDC4JKJz7p16yRJDRo0cGwwAAAAAAoFQ90AAAAAOD0SHwAAAABOj8QHAAAAgNMj8QEAAADg9Eh8AAAAADg9Eh8AAAAATs/lprN2d3fXgw8+aH0PAAAAwPm5XI+Pu7u7qlevrurVq5P4AICLSktL03PPPaeIiAj5+vqqcuXKev7555WRkeHo0AAAduJyPT4AAEybNk3z5s3T+++/rzp16mjPnj0aOHCgAgIC9OSTTzo6PACAHbhc4pOenq7vv/9eklSvXj0HRwMAcISdO3eqR48e6tatmySpUqVKWrZsmfbs2ZPtPsnJyUpOTrYuJyUl2T1OAEDBccnE5z//+Y8kqU6dOg6OBgDgCHfccYfmzZunw4cPq3r16vruu+/01VdfacaMGdnuEx0drSlTphRoHNkdryDPc+2xoqKiCuy4AFDUuFziAwDAhAkTlJiYqJo1a8rd3V3p6el66aWX9O9//zvbfSIjIzVmzBjrclJSksLDwwsjXABAASDxAQC4nOXLl2vx4sVaunSp6tSpo9jYWI0aNUphYWHq379/lvt4e3vL29u7kCMFABQUEh8AgMsZN26cnn76afXp00eSdNttt+nEiROKjo7ONvEBABRtLjedNQAAly5dkpubbRPo7u7OdNYA4MTo8QEAuJzu3bvrpZdeUoUKFVSnTh3t379fr7/+ugYNGuTo0AAAdkLiAwBwOW+99ZYmTpyoYcOG6dy5cwoLC9OQIUM0adIkR4cGALATl0t83N3d9cADD1jfAwBcj7+/v2bMmJHj9NUAAOfikokP398DAAAAuBYmNwAAAADg9Fyuxyc9PV0//fSTJKlmzZoOjgYAAABAYXC5Hp/09HR99NFH+uijj5Senu7ocAAAAAAUApdLfAAAAAC4HhIfAAAAAE6PxAcAAACA0yPxAQAAAOD0SHwAAAAAOL08Jz5ffvmlunfvrrCwMFksFq1evfqG+2zbtk2NGzeWj4+PKleurHnz5uUnVgAAAADIlzwnPhcvXlT9+vU1a9asXJWPj49X165d1bp1a+3fv1/PPPOMRo4cqZUrV+Y52ILg7u6uHj16qEePHnJ3d3dIDAAAAAAKV56/wLRLly7q0qVLrsvPmzdPFSpU0IwZMyRJtWrV0p49ezR9+nTdd999We6TnJys5ORk63JSUlJew8yWu7u7GjZsWGDHAwAAAHDrs/szPjt37lSnTp1s1nXu3Fl79uxRampqlvtER0crICDA+goPD7d3mAAAAACcmN0Tn4SEBAUHB9usCw4OVlpams6fP5/lPpGRkUpMTLS+Tp06VWDxpKen6/Dhwzp8+LDS09ML7LgAAAAAbl15HuqWHxaLxWbZGJPl+qu8vb3l7e1tl1jS09O1dOlSSdIzzzxjl3MAAAAAuLXYPfEJCQlRQkKCzbpz587Jw8NDgYGB9j49AABOY8qUKTbLUVFRWW67dn1ejldQxwWAW5Hdh7q1aNFCmzZtslm3ceNGNWnSRJ6envY+PQAAAADkPfG5cOGCYmNjFRsbK+nKdNWxsbE6efKkpCvP5/Tr189afujQoTpx4oTGjBmjuLg4LViwQO+9957Gjh1bMDUAAAAAgBvI81C3PXv2qH379tblMWPGSJL69++vhQsX6uzZs9YkSJIiIiK0bt06jR49WrNnz1ZYWJhmzpyZ7VTWAAAAAFDQ8pz4tGvXzjo5QVYWLlyYaV3btm21b9++vJ4KAAAAAAqE3Z/xAQAAAABHK5TprG8l7u7u6tq1q/U9AAAAAOfnkolPs2bNHB0GAAAAgELEUDcAAAAATs/lenwyMjJ04sQJSVLFihUdHA0AAACAwuByPT5paWl6//339f777ystLc3R4QAAAAAoBC6X+AAAAABwPSQ+AAAAAJweiQ8AAAAAp0fiAwAAAMDpkfgAAAAAcHokPgAAAACcnst9j4+bm5vuvPNO63sAAAAAzs/lEh8PDw+1atXK0WEAAAAAKER0eQAAXNLp06f10EMPKTAwUH5+fmrQoIH27t3r6LAAAHbicj0+GRkZOnv2rCQpNDTUwdEAABzhzz//VKtWrdS+fXv997//VVBQkI4dO6aSJUs6OjQAgJ24XOKTlpam+fPnS5KeeeYZB0cDAHCEadOmKTw8XDExMdZ1lSpVclxAAAC7Y6gbAMDlrFmzRk2aNNEDDzygoKAgNWzY0PpPsewkJycrKSnJ5gUAKDpIfAAALufnn3/W3LlzVa1aNW3YsEFDhw7VyJEjtWjRomz3iY6OVkBAgPUVHh5eiBEDAG4WiQ8AwOVkZGSoUaNGmjp1qho2bKghQ4Zo8ODBmjt3brb7REZGKjEx0fo6depUIUYMALhZJD4AAJcTGhqq2rVr26yrVauWTp48me0+3t7eKlGihM0LAFB0kPgAAFxOq1atdOjQIZt1hw8fVsWKFR0UEQDA3kh8AAAuZ/To0dq1a5emTp2qo0ePaunSpXrnnXc0fPhwR4cGALATl5vO2s3NTW3btrW+BwC4nqZNm2rVqlWKjIzU888/r4iICM2YMUN9+/Z1dGgAADtxucTHw8ND7du3d3QYAAAHu/vuu3X33Xc7OgwAQCGhywMAAACA03O5Hp+MjAydP39eklSmTBkHRwMAAACgMLhcj09aWprmzJmjOXPmKC0tzdHhAAAAACgELpf4AAAAAHA9JD4AAAAAnB6JDwAAAACnR+IDAAAAwOmR+AAAAABweiQ+AAAAAJyey32Pj5ubm1q2bGl9DwAAAMD5uVzi4+HhoU6dOjk6DAAAAACFiC4PAAAAAE7P5Xp8MjIylJiYKEkKCAhwcDQAAAAACoPL9fikpaXpzTff1Jtvvqm0tDRHhwMAAACgELhc4gMAAADA9ZD4AAAAAHB6LveMDwAAzmLKlCkFsr4gzh8VFVXk9gfgWujxAQAAAOD0SHwAAAAAOD0SHwAAAABOz+We8XFzc1PTpk2t7wEAAAA4P5dLfDw8PNStWzdHhwEAAACgENHlAQAAAMDpuVyPjzFGly5dkiT5+fk5OBoAAAAAhcHlenxSU1P16quv6tVXX1VqaqqjwwEAAABQCFwu8QEAAADgekh8AAAAADg9Eh8AAAAATo/EBwAAAIDTI/EBAAAA4PRIfAAAAAA4PZf7Hh83NzfVr1/f+h4AAACA83O5xMfDw0P/+te/HB0GAAAAgEJElwcAAAAAp+dyPT7GGKWmpkqSPD09HRwNAAAAgMLgcj0+qampmjp1qqZOnWpNgAAAri06OloWi0WjRo1ydCgAADtxucQHAIBr7d69W++8847q1avn6FAAAHZE4gMAcFkXLlxQ3759NX/+fJUqVcrR4QAA7MjlnvG53pQpU6zvo6KiHBgJAKCwDR8+XN26dVPHjh314osv5lg2OTlZycnJ1uWkpCR7hwcAKEAun/gAAFzThx9+qH379mn37t25Kh8dHW3zzzLkDv9gBHCrYKgbAMDlnDp1Sk8++aQWL14sHx+fXO0TGRmpxMRE6+vUqVN2jhIAUJDo8QEAuJy9e/fq3Llzaty4sXVdenq6vvzyS82aNUvJyclyd3e32cfb21ve3t6FHSoAoIC4XOJjsVhUu3Zt63sAgOvp0KGDfvjhB5t1AwcOVM2aNTVhwoRMSQ8AoOhzucTH09NTvXr1cnQYAAAH8vf3V926dW3WFStWTIGBgZnWAwCcA8/4AAAAAHB6+Up85syZo4iICPn4+Khx48bavn17tmW3bt0qi8WS6fXTTz/lO2gAAAra1q1bNWPGDEeHAQCwkzwPdVu+fLlGjRqlOXPmqFWrVnr77bfVpUsXHTx4UBUqVMh2v0OHDqlEiRLW5bJly+Yv4puUkpKiqVOnSpKeeeYZeXl5OSQOAAAAAIUnzz0+r7/+uh555BE9+uijqlWrlmbMmKHw8HDNnTs3x/2CgoIUEhJiffHgKAAAAIDCkqfEJyUlRXv37lWnTp1s1nfq1Ek7duzIcd+GDRsqNDRUHTp00JYtW3Ism5ycrKSkJJsXAAAAAORXnhKf8+fPKz09XcHBwTbrg4ODlZCQkOU+oaGheuedd7Ry5Up98sknqlGjhjp06KAvv/wy2/NER0crICDA+goPD89LmAAAAABgI1/TWV///TfGmGy/E6dGjRqqUaOGdblFixY6deqUpk+frjZt2mS5T2RkpMaMGWNdTkpKIvkBAAAAkG956vEpU6aM3N3dM/XunDt3LlMvUE6aN2+uI0eOZLvd29tbJUqUsHkBAAAAQH7lKfHx8vJS48aNtWnTJpv1mzZtUsuWLXN9nP379ys0NDQvpwYAAACAfMvzULcxY8bo4YcfVpMmTdSiRQu98847OnnypIYOHSrpyjC106dPa9GiRZKkGTNmqFKlSqpTp45SUlK0ePFirVy5UitXrizYmuSSxWJRtWrVrO8BAAAAOL88Jz69e/fW77//rueff15nz55V3bp1tW7dOlWsWFGSdPbsWZ08edJaPiUlRWPHjtXp06fl6+urOnXq6LPPPlPXrl0LrhZ54Onpqb59+zrk3AAAAAAcI1+TGwwbNkzDhg3LctvChQttlsePH6/x48fn5zQAAAAAUCDy/AWmAAAAAFDU5KvHpyhLSUnRq6++KkkaN26cvLy8HBwRAAAAAHtzucRHklJTUx0dAgAAAIBCxFA3AAAAAE6PxAcAAACA0yPxAQAAAOD0XPIZHwAAkHdTpkwp0HJ53T8qKuqm9rm+TE7HA+B86PEBAAAA4PRcrsfHYrGoYsWK1vcAAAAAnJ/LJT6enp4aOHCgo8MAAAAAUIgY6gYAAADA6ZH4AAAAAHB6LjfULSUlRTNmzJAkjRo1Sl5eXo4NCAAAAIDduVziI0mXLl1ydAgAAAAAChFD3QAAAAA4PRIfAAAAAE6PxAcAAACA0yPxAQAAAOD0SHwAAAAAOD2Xm9XNYrEoLCzM+h4AAACA83O5xMfT01OPPfaYo8MAAAAAUIgY6gYAAADA6ZH4AAAAAHB6LjfULSUlRbNnz5YkDR8+XF5eXg6OCAAAAIC9uVziI0mJiYmODgEAAABAIWKoGwDA5URHR6tp06by9/dXUFCQevbsqUOHDjk6LACAHZH4AABczrZt2zR8+HDt2rVLmzZtUlpamjp16qSLFy86OjQAgJ245FA3AIBrW79+vc1yTEyMgoKCtHfvXrVp08ZBUQEA7InEBwDg8q4++1m6dOlsyyQnJys5Odm6nJSUZPe4AAAFh8QHAODSjDEaM2aM7rjjDtWtWzfbctHR0ZoyZUohRuY4+alnbvbJqczN7n+z54yKisp3mcLa5/q6XFsuP+fM6/lhi8+s6HHJZ3zKli2rsmXLOjoMAMAtYMSIEfr++++1bNmyHMtFRkYqMTHR+jp16lQhRQgAKAgu1+Pj5eWl4cOHOzoMAMAt4IknntCaNWv05Zdfqnz58jmW9fb2lre3dyFFBgAoaC6X+AAAYIzRE088oVWrVmnr1q2KiIhwdEgAADsj8QEAuJzhw4dr6dKl+s9//iN/f38lJCRIkgICAuTr6+vg6AAA9uByz/ikpKRo9uzZmj17tlJSUhwdDgDAAebOnavExES1a9dOoaGh1tfy5csdHRoAwE5cssfnt99+c3QIAAAHMsY4OgQAQCFzuR4fAAAAAK6HxAcAAACA0yPxAQAAAOD0SHwAAAAAOD0SHwAAAABOzyVndQsICHB0CAAAAAAKkcslPl5eXho9erSjwwAAAABQiFwu8cnJlClTbJajoqIcFAkAAACAgsQzPgAAAACcnsv1+KSmpiomJkaSNHDgQHl6ejo4IgAAAAD25nKJjzFGZ86csb4HAAAA4PwY6gYAAADA6ZH4AAAAAHB6JD4AAAAAnB6JDwAAAACnR+IDAAAAwOm53KxukuTn5+foEAAAwC3k+i8xz02Z3HzR+bX7XF8+u3PmtE9e979eYXw5e24+SynrWKZOjdaLkycWdEhW2cVmr88lPz8zznT+W43LJT5eXl4aP368o8MAAAAAUIgY6gYAAADA6ZH4AAAAAHB6LjfULTU1VYsXL5YkPfTQQ/L09HRwRAAAAADszeUSH2OMTpw4YX0PAAAAwPkx1A0AAACA0yPxAQAAAOD0SHwAAAAAOD2Xe8YnL3L7BWIAAAAAbm30+AAAAABwei7Z48MU1gAAAIBrcbnEx8vLS88++6yjwwAAAABQiBjqBgAAAMDpkfgAAAAAcHouN9QtNTVVK1askCT16tWL530AAAAAF+ByiY8xRkeOHLG+zy2mtgYAAACKLoa6AQAAAHB6JD4AAAAAnF6+Ep85c+YoIiJCPj4+aty4sbZv355j+W3btqlx48by8fFR5cqVNW/evHwFe6uYMmWK9QUAKLry2p4BAIquPCc+y5cv16hRo/Tss89q//79at26tbp06aKTJ09mWT4+Pl5du3ZV69attX//fj3zzDMaOXKkVq5cedPBAwCQX3ltzwAARVueE5/XX39djzzyiB599FHVqlVLM2bMUHh4uObOnZtl+Xnz5qlChQqaMWOGatWqpUcffVSDBg3S9OnTbzr4WwG9PwBQNOW1PQMAFG15mtUtJSVFe/fu1dNPP22zvlOnTtqxY0eW++zcuVOdOnWyWde5c2e99957Sk1NzXI66eTkZCUnJ1uXExMTJUlJSUl5CdfG5cuXJV2Zzvra82RkZOT7mNeLjIwslH0A5M2llDRlJF+SdOU+kublchNa5tvV+25eZsEsCvLTntmzbULRlN21z+66Xl8+N9f/2n0K4uclNzHfzM/09cfKTSzX3qOTLZdv+vz5iS0/58zNZ3b9+exZt1vx/PaS77bJ5MHp06eNJPP111/brH/ppZdM9erVs9ynWrVq5qWXXrJZ9/XXXxtJ5syZM1nuExUVZSTx4sWLF69b5HXq1Km8NBe3vPy0Z7RNvHjx4nVrvfLaNuXr354Wi8Vm2RiTad2Nyme1/qrIyEiNGTPGupyRkaE//vhDgYGBOZ4nO0lJSQoPD9epU6dUokSJPO9/K3LGOknOWS/qVHQ4Y71utk7GGP39998KCwuzQ3SOl5f2jLbpxqhT0eGM9aJORYej2qY8JT5lypSRu7u7EhISbNafO3dOwcHBWe4TEhKSZXkPDw8FBgZmuY+3t7e8vb1t1pUsWTIvoWapRIkSTvVDIzlnnSTnrBd1KjqcsV43U6eAgIACjsbx8tOe0TblHnUqOpyxXtSp6CjstilPkxt4eXmpcePG2rRpk836TZs2qWXLllnu06JFi0zlN27cqCZNmmT5fA8AAPaWn/YMAFC05XlWtzFjxujdd9/VggULFBcXp9GjR+vkyZMaOnSopCtDAfr162ctP3ToUJ04cUJjxoxRXFycFixYoPfee09jx44tuFoAAJBHN2rPAADOJc/P+PTu3Vu///67nn/+eZ09e1Z169bVunXrVLFiRUnS2bNnbb4DISIiQuvWrdPo0aM1e/ZshYWFaebMmbrvvvsKrhY34O3traioqExDFIoyZ6yT5Jz1ok5FhzPWyxnrVFBu1J7ZmzNeG+pUdDhjvahT0eGoelmMcbI5SgEAAADgOnke6gYAAAAARQ2JDwAAAACnR+IDAAAAwOmR+AAAAABwekUy8ZkzZ44iIiLk4+Ojxo0ba/v27TmW37Ztmxo3biwfHx9VrlxZ8+bNy1Rm5cqVql27try9vVW7dm2tWrXKXuFnq6DrdeDAAd13332qVKmSLBaLZsyYYcfos1bQdZo/f75at26tUqVKqVSpUurYsaO+/fZbe1Yhk4Ku0yeffKImTZqoZMmSKlasmBo0aKAPPvjAnlXIkj1+r6768MMPZbFY1LNnzwKOOmcFXaeFCxfKYrFkel2+fNme1bBhj+v0119/afjw4QoNDZWPj49q1aqldevW2asKTsNR94K8nvdWr9PkyZMz/U6FhITcsnW6Vk73Nntep/wcvyDqVdSuVW7v2UXpdyo3dbL3dbJHvaTctUU3fa1MEfPhhx8aT09PM3/+fHPw4EHz5JNPmmLFipkTJ05kWf7nn382fn5+5sknnzQHDx408+fPN56enubjjz+2ltmxY4dxd3c3U6dONXFxcWbq1KnGw8PD7Nq1q7CqZZd6ffvtt2bs2LFm2bJlJiQkxLzxxhuFVJsr7FGnBx980MyePdvs37/fxMXFmYEDB5qAgADzyy+/FNk6bdmyxXzyySfm4MGD5ujRo2bGjBnG3d3drF+/vlDqZIx96nXV8ePHTbly5Uzr1q1Njx497FyT/7FHnWJiYkyJEiXM2bNnbV6FxR51Sk5ONk2aNDFdu3Y1X331lTl+/LjZvn27iY2NLaxqFUmOuhfk9bxFoU5RUVGmTp06Nr9T586du+n62KtOV+V0b7PndXJkvYratcrNPbuo/U7lpk72vE72qldu2qKCuFZFLvFp1qyZGTp0qM26mjVrmqeffjrL8uPHjzc1a9a0WTdkyBDTvHlz63KvXr3MXXfdZVOmc+fOpk+fPgUU9Y3Zo17XqlixYqEnPvaukzHGpKWlGX9/f/P+++/ffMC5UBh1MsaYhg0bmueee+7mgs0De9UrLS3NtGrVyrz77rumf//+hZr42KNOMTExJiAgoMBjzS171Gnu3LmmcuXKJiUlpeADdmKOuhfk9bx54ag6RUVFmfr16+cv6Btw1L3NntcpP8cvqHoVtWuVm3t2Ufudyk2d7HmdjHFcW1QQ16pIDXVLSUnR3r171alTJ5v1nTp10o4dO7LcZ+fOnZnKd+7cWXv27FFqamqOZbI7ZkGzV70cqbDqdOnSJaWmpqp06dIFE3gOCqNOxhh9/vnnOnTokNq0aVNwwefAnvV6/vnnVbZsWT3yyCMFH3gO7FmnCxcuqGLFiipfvrzuvvtu7d+/v+ArkAV71WnNmjVq0aKFhg8fruDgYNWtW1dTp05Venq6fSriBBx1L8jPeXPL0fe3I0eOKCwsTBEREerTp49+/vnnm6qP5Lh7mz2vU36PX5D37KJ2rXK6ZxfV36nctEP2uE6S49qigrpWRSrxOX/+vNLT0xUcHGyzPjg4WAkJCVnuk5CQkGX5tLQ0nT9/Pscy2R2zoNmrXo5UWHV6+umnVa5cOXXs2LFgAs+BPeuUmJio4sWLy8vLS926ddNbb72lO++8s+ArkQV71evrr7/We++9p/nz59sn8BzYq041a9bUwoULtWbNGi1btkw+Pj5q1aqVjhw5Yp+KXMNedfr555/18ccfKz09XevWrdNzzz2n1157TS+99JJ9KuIEHHUvyM95b/U6SdLtt9+uRYsWacOGDZo/f74SEhLUsmVL/f7777dknW50b7Pndcrv8Qvqnl3UrtWN7tlF8XcqN+2Qva6TPet1o7aooK6VR65L3kIsFovNsjEm07oblb9+fV6PaQ/2qJej2bNOr7zyipYtW6atW7fKx8enAKLNHXvUyd/fX7Gxsbpw4YI+//xzjRkzRpUrV1a7du0KLvAbKMh6/f3333rooYc0f/58lSlTpuCDzaWCvlbNmzdX8+bNrdtbtWqlRo0a6a233tLMmTMLKuwcFXSdMjIyFBQUpHfeeUfu7u5q3Lixzpw5o1dffVWTJk0q4Oidi6PuBfZsrxxRpy5duljL3nbbbWrRooWqVKmi999/X2PGjLnZKjns3mbvvyscUa+idK2k3N+zi9LvVG7qZO/rlF2chdEW3ey1KlKJT5kyZeTu7p4pszt37lymDPCqkJCQLMt7eHgoMDAwxzLZHbOg2atejmTvOk2fPl1Tp07V5s2bVa9evYINPhv2rJObm5uqVq0qSWrQoIHi4uIUHR1dKImPPep14MABHT9+XN27d7duz8jIkCR5eHjo0KFDqlKlSgHX5H8K63fKzc1NTZs2LZQeH3vVKTQ0VJ6ennJ3d7eWqVWrlhISEpSSkiIvL68CrknR56h7QX7Oe6vXKSvFihXTbbfddtO/V466t4WHh9vtOjmyXlnds2/la5WV6+/ZRfV36lq5aYcK6jpJjmuLCupaFamhbl5eXmrcuLE2bdpks37Tpk1q2bJllvu0aNEiU/mNGzeqSZMm8vT0zLFMdscsaPaqlyPZs06vvvqqXnjhBa1fv15NmjQp+OCzUZjXyRij5OTkmw86F+xRr5o1a+qHH35QbGys9XXPPfeoffv2io2NVXh4uN3qIxXetTLGKDY2VqGhoQUTeA7sVadWrVrp6NGj1j9yJOnw4cMKDQ0l6cmGo+4F+Tlvbt1K97fk5GTFxcXd9O+Vo+5t9rxOjqxXVm7la5WV6+/ZzvA7lZt2qKCuk+S4tqjArlWup0G4RVydyu69994zBw8eNKNGjTLFihUzx48fN8YY8/TTT5uHH37YWv7qFHqjR482Bw8eNO+9916mKfS+/vpr4+7ubl5++WUTFxdnXn75ZYdNZ12Q9UpOTjb79+83+/fvN6GhoWbs2LFm//795siRI0W2TtOmTTNeXl7m448/tpmm8e+//y6ydZo6darZuHGjOXbsmImLizOvvfaa8fDwMPPnzy+UOtmrXtcr7Fnd7FGnyZMnm/Xr15tjx46Z/fv3m4EDBxoPDw/zzTffFNk6nTx50hQvXtyMGDHCHDp0yKxdu9YEBQWZF198sVDqVFQ56l5wo/MWxTo99dRTZuvWrebnn382u3btMnfffbfx9/e/Zet0vazubfa8To6sV1G7Vrm5Zxe136nc1Mme18le9cpNW1QQ16rIJT7GGDN79mxTsWJF4+XlZRo1amS2bdtm3da/f3/Ttm1bm/Jbt241DRs2NF5eXqZSpUpm7ty5mY750UcfmRo1ahhPT09Ts2ZNs3LlSntXI5OCrld8fLyRlOl1/XHsqaDrVLFixSzrFBUVVQi1uaKg6/Tss8+aqlWrGh8fH1OqVCnTokUL8+GHHxZGVWzY4/fqWoWd+BhT8HUaNWqUqVChgvHy8jJly5Y1nTp1Mjt27CiMqljZ4zrt2LHD3H777cbb29tUrlzZvPTSSyYtLc3eVSnyHHUvyOm8RbFOvXv3NqGhocbT09OEhYWZe++91xw4cOCWrdP1sru32fM63ej49qpXUbtWub1nF6XfqdzUyd7XyR71MiZ3bdHNXiuLMf//6SIAAAAAcFJF6hkfAAAAAMgPEh8AAAAATo/EBwAAAIDTI/EBAAAA4PRIfAAAAAA4PRIfAAAAAE6PxAcAAACA0yPxAQAAAOD0SHzgsiZPnqwGDRpYlwcMGKCePXve1DEL4hgAANdEuwTYF4kPbikDBgyQxWKRxWKRp6enKleurLFjx+rixYt2P/ebb76phQsX5qrs8ePHZbFYFBsbm+9jAABufbRLgPPwcHQAwPXuuusuxcTEKDU1Vdu3b9ejjz6qixcvau7cuZnKpqamytPTs0DOGxAQcEsc41aTkpIiLy8vR4cBAA5Du3RroV1CftHjg1uOt7e3QkJCFB4ergcffFB9+/bV6tWrJf1vGMCCBQtUuXJleXt7yxijxMREPfbYYwoKClKJEiX0f//3f/ruu+9sjvvyyy8rODhY/v7+euSRR3T58mWb7dcPB8jIyNC0adNUtWpVeXt7q0KFCnrppZckSREREZKkhg0bymKxqF27dlkeIzk5WSNHjlRQUJB8fHx0xx13aPfu3dbtW7dulcVi0eeff64mTZrIz89PLVu21KFDh7L9fFJSUjRixAiFhobKx8dHlSpVUnR0tHX7X3/9pccee0zBwcHy8fFR3bp1tXbtWuv2lStXqk6dOvL29lalSpX02muv2Ry/UqVKevHFFzVgwAAFBARo8ODBkqQdO3aoTZs28vX1VXh4uEaOHFko//EEAEejXaJdgnMg8cEtz9fXV6mpqdblo0ePasWKFVq5cqW1S79bt25KSEjQunXrtHfvXjVq1EgdOnTQH3/8IUlasWKFoqKi9NJLL2nPnj0KDQ3VnDlzcjxvZGSkpk2bpokTJ+rgwYNaunSpgoODJUnffvutJGnz5s06e/asPvnkkyyPMX78eK1cuVLvv/++9u3bp6pVq6pz587WuK569tln9dprr2nPnj3y8PDQoEGDso1r5syZWrNmjVasWKFDhw5p8eLFqlSpkqQrjWKXLl20Y8cOLV68WAcPHtTLL78sd3d3SdLevXvVq1cv9enTRz/88IMmT56siRMnZhoG8eqrr6pu3brau3evJk6cqB9++EGdO3fWvffeq++//17Lly/XV199pREjRuT4GQKAM6JdskW7hCLDALeQ/v37mx49eliXv/nmGxMYGGh69epljDEmKirKeHp6mnPnzlnLfP7556ZEiRLm8uXLNseqUqWKefvtt40xxrRo0cIMHTrUZvvtt99u6tevn+W5k5KSjLe3t5k/f36WccbHxxtJZv/+/dnGf+HCBePp6WmWLFli3Z6SkmLCwsLMK6+8YowxZsuWLUaS2bx5s7XMZ599ZiSZf/75J8tzP/HEE+b//u//TEZGRqZtGzZsMG5ububQoUNZ7vvggw+aO++802bduHHjTO3ata3LFStWND179rQp8/DDD5vHHnvMZt327duNm5tbtnECgDOgXaJdgvOgxwe3nLVr16p48eLy8fFRixYt1KZNG7311lvW7RUrVlTZsmWty3v37tWFCxcUGBio4sWLW1/x8fE6duyYJCkuLk4tWrSwOc/1y9eKi4tTcnKyOnTokO96HDt2TKmpqWrVqpV1naenp5o1a6a4uDibsvXq1bO+Dw0NlSSdO3cuy+MOGDBAsbGxqlGjhkaOHKmNGzdat8XGxqp8+fKqXr16tvW6Nh5JatWqlY4cOaL09HTruiZNmtiU2bt3rxYuXGjz+Xbu3FkZGRmKj4/P6WMAgCKPdol2Cc6ByQ1wy2nfvr3mzp0rT09PhYWFZXpItFixYjbLGRkZCg0N1datWzMdq2TJkvmKwdfXN1/7XcsYI0myWCyZ1l+/7to6Xt2WkZGR5XEbNWqk+Ph4/fe//9XmzZvVq1cvdezYUR9//PEN487q3FfjvFZWn/GQIUM0cuTITGUrVKiQ4zkBoKijXaJdgnOgxwe3nGLFiqlq1aqqWLFirmbGadSokRISEuTh4aGqVavavMqUKSNJqlWrlnbt2mWz3/XL16pWrZp8fX31+eefZ7n96mwy1/436npVq1aVl5eXvvrqK+u61NRU7dmzR7Vq1bphvXJSokQJ9e7dW/Pnz9fy5cu1cuVK/fHHH6pXr55++eUXHT58OMv9ateubROPdOXh0OrVq1vHW2elUaNGOnDgQKbP92odAcCZ0S7dGO0SigJ6fFDkdezYUS1atFDPnj01bdo01ahRQ2fOnNG6devUs2dPNWnSRE8++aT69++vJk2a6I477tCSJUt04MABVa5cOctj+vj4aMKECRo/fry8vLzUqlUr/fbbbzpw4IAeeeQRBQUFydfXV+vXr1f58uXl4+OTacrQYsWK6fHHH9e4ceNUunRpVahQQa+88oouXbqkRx55JN/1feONNxQaGqoGDRrIzc1NH330kUJCQlSyZEm1bdtWbdq00X333afXX39dVatW1U8//SSLxaK77rpLTz31lJo2baoXXnhBvXv31s6dOzVr1qwbPlA7YcIENW/eXMOHD9fgwYNVrFgxxcXFadOmTTbDPQAAtEu0S7hV0eODIs9isWjdunVq06aNBg0apOrVq6tPnz46fvy4dbab3r17a9KkSZowYYIaN26sEydO6PHHH8/xuBMnTtRTTz2lSZMmqVatWurdu7d1fLOHh4dmzpypt99+W2FhYerRo0eWx3j55Zd133336eGHH1ajRo109OhRbdiwQaVKlcp3fYsXL65p06apSZMmatq0qY4fP65169bJze3Kr/PKlSvVtGlT/fvf/1bt2rU1fvx4638AGzVqpBUrVujDDz9U3bp1NWnSJD3//PMaMGBAjuesV6+etm3bpiNHjqh169Zq2LChJk6caB33DQD4H9ol2iXcmiwmq4GUAAAAAOBE6PEBAAAA4PRIfAAAAAA4PRIfAAAAAE6PxAcAAACA0yPxAQAAAOD0SHwAAAAAOD0SHwAAAABOj8QHAAAAgNMj8QEAAADg9Eh8AAAAADg9Eh8AAAAATu//Aat8hJ+R6c7WAAAAAElFTkSuQmCC\n",
256
+ "text/plain": [
257
+ "<Figure size 1000x500 with 2 Axes>"
258
+ ]
259
+ },
260
+ "metadata": {},
261
+ "output_type": "display_data"
262
+ }
263
+ ],
264
+ "source": [
265
+ "fig = plt.figure(figsize=(10,5))\n",
266
+ "ax = fig.add_subplot(1,2,1)\n",
267
+ "\n",
268
+ "_ = plt.hist(KC_pred,bins=100,range=[0,0.06],color='gray')\n",
269
+ "plt.axvline(evolved_seq_6000_dict['mut_pred'][[35],3,34],label=\"Greedy search (3 mutations)\")\n",
270
+ "plt.axvline(evolved_seq_6000_dict['mut_pred'][[35],0,34],label=\"Random sequence\",color='black',linestyle='--')\n",
271
+ "\n",
272
+ "plt.legend()\n",
273
+ "plt.title(\"Prediction score dist.\")\n",
274
+ "plt.xlabel(\"Prediction score\")\n",
275
+ "\n",
276
+ "ax = fig.add_subplot(1,2,2)\n",
277
+ "\n",
278
+ "plt.hist(KC_pred,bins=100,range=[0.03,0.06],color='gray')\n",
279
+ "plt.axvline(evolved_seq_6000_dict['mut_pred'][[35],3,34],label=\"Greedy search\")\n",
280
+ "plt.title(\"Prediction score dist.\")\n",
281
+ "plt.xlabel(\"Prediction score\")\n",
282
+ "\n",
283
+ "plt.savefig(\"figures/mutation_combination/EFS4_3Steps_allpossiblemuts_pred_distribution.pdf\",transparent=True)"
284
+ ]
285
+ }
286
+ ],
287
+ "metadata": {
288
+ "kernelspec": {
289
+ "display_name": "Deeplearning tf1.15",
290
+ "language": "python",
291
+ "name": "deeplearning_tf115"
292
+ },
293
+ "language_info": {
294
+ "codemirror_mode": {
295
+ "name": "ipython",
296
+ "version": 3
297
+ },
298
+ "file_extension": ".py",
299
+ "mimetype": "text/x-python",
300
+ "name": "python",
301
+ "nbconvert_exporter": "python",
302
+ "pygments_lexer": "ipython3",
303
+ "version": "3.7.10"
304
+ },
305
+ "toc-autonumbering": false,
306
+ "toc-showcode": false,
307
+ "toc-showmarkdowntxt": false
308
+ },
309
+ "nbformat": 4,
310
+ "nbformat_minor": 5
311
+ }
the_code/Fly/FLY_KC_EFS_Steps_Rescue.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
the_code/Fly/FLY_KC_Motif_Implanting.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
the_code/Fly/FLY_KC_Near_Enhancer_Seqs.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
the_code/Fly/FLY_KC_Repressors.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
the_code/Fly/FLY_PNG_EFS.ipynb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12a71d659e37932f5e84c6445a5d64d77fc539e4530d683d37d030de1d9806d6
3
+ size 14744364
the_code/Fly/FLY_using_DeepFlyBrain.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
the_code/Fly/README.txt ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Dependencies:
2
+ DL Python environment to use DeepMEL, DeepMEL2, and DeepFlyBrain:
3
+ python=3.7 tensorflow-gpu=1.15 numpy=1.19.5 matplotlib=3.1.1 shap=0.29.3 ipykernel=5.1.2 h5py=2.10.0 TF-MoDISco 0.5.5.4
4
+
5
+ DL Python environment to train GAN models:
6
+ python=3.6 tensorflow-gpu=1.14.0 keras-gpu=2.2.4 numpy=1.16.2 matplotlib=3.1.1 shap=0.29.3 ipykernel=5.1.2
7
+
8
+
9
+ Deepexplainer script update:
10
+ In order to calculate nucleotide contribution scores for only the selected class,
11
+ conda_env/lib/python3.7/site-packages/shap/explainers/_deep/deep_tf.py is updated by inserting the following codes at line 277:
12
+ elif output_rank_order.isnumeric():
13
+ model_output_ranks = np.argsort(-model_output_values)
14
+ model_output_ranks[0] = int(output_rank_order)
15
+
16
+
17
+ FLY_using_DeepFlyBrain:
18
+ This notebook shows how to load and use the provided model.
19
+ It shows how to calculate and plot:
20
+ Predictions
21
+ Deexplainer contribution scores
22
+ In silico saturation mutagenesis
23
+ DeepFlyBrain is provided in ./models/deepflybrain
24
+ The model can be downloaded from Zenodo, which is used by Kipoi database:
25
+ DeepFlyBrain: https://zenodo.org/records/5153337
26
+
27
+
28
+ FLY_KC_EFS:
29
+ This notebook shows how to design synthetic sequences by using in silico evolution for Kenyon Cells.
30
+ It uses the selected enhancers from the MM_Cbust_Homer_Motif notebook
31
+ It consists of:
32
+ Generating GC-adjusted random sequences:
33
+ Performing in silico evolution and random drift experiments.
34
+ Plotting the findings.
35
+ Printing generated DNA sequences in nucleotide letters.
36
+ Intermediate files are saved to ./data/deepflybrain folder
37
+ Figures are saved to ./figures/evolution_from_scratch
38
+
39
+
40
+ FLY_PNG_EFS:
41
+ This notebook shows how to design synthetic sequences by using in silico evolution for Glial Cells.
42
+ It uses the selected enhancers from the FLY_KC_EFS notebook
43
+ It consists of:
44
+ Performing in silico evolution experiments.
45
+ Plotting the findings.
46
+ Printing generated DNA sequences in nucleotide letters.
47
+ Intermediate files are saved to ./data/deepflybrain folder
48
+ Figures are saved to ./figures/evolution_from_scratch_PNG
49
+
50
+
51
+ FLC_KC_EFS_Steps_Rescue:
52
+ This notebook shows how to visualize mutational steps and to get sequences with additional mutations.
53
+ It uses the synthetic sequences file generated via FLY_KC_EFS notebook.
54
+ It consists of:
55
+ Printing DNA sequences in nucleotide letters for different mutational steps.
56
+ Applying mutations to selected position and substation.
57
+ Plotting the findings.
58
+ Figures are saved to ./figures/mutational_steps and ./figures/rescue folders
59
+
60
+
61
+ FLY_KC_EFS_Mutation_Combination:
62
+ This notebooks shows using alternative state space searches during in silico evolution
63
+ It uses the synthetic sequences file generated via FLY_KC_EFS notebook.
64
+ It consists of:
65
+ Choosing top 20 best mutations instead of only top 1 during in silico evolution
66
+ Investigating different evolution paths
67
+ Choosing 5 random mutations instead following the model's guidance
68
+ Intermediate files are saved to ./data/mutation_combination folder
69
+ Figures are saved to ./figures/mutation_combination
70
+
71
+
72
+ FLY_KC_EFS_Mutation_Combination_All3Mut:
73
+ This notebooks shows how to generate and score sequences with all possible 3 mutations
74
+ It uses the synthetic sequences file generated via FLY_KC_EFS notebook.
75
+ It consists of:
76
+ Generating sequences with all possible 3 mutations
77
+ Comparing prediction scores
78
+ Figures are saved to ./figures/mutation_combination
79
+
80
+
81
+ FLY_KC_Near_Enhancer_Seqs:
82
+ This notebook shows the in silico evolution of near-enhancer sequences.
83
+ Kenyon Cell accessibility bigwig file is provided in ./data/near_enhancer_seq
84
+ Chopped fly genome is provided in ./data/near_enhancer_seq
85
+ It consists of:
86
+ Calculating predictions on the 500bp chopped genomic sequences
87
+ Plotting prediction scores vs chromatin accessibility
88
+ Choosing sequences with low accessibility and high prediction score
89
+ Plotting ATAC-seq coverage on chosen regions
90
+ Performing additional in silico evolution mutations on the chosen regions
91
+ Applying mutations to selected position and substation to create repressor binding sites
92
+ Intermediate files are saved to ./data/near_enhancer_seq folder
93
+ Figures are saved to ./figures/near_enhancer_seq folder
94
+
95
+
96
+ FLY_KC_Repressors:
97
+ This notebook shows how to perform mutations on generated sequences and visualize mutational steps.
98
+ It uses the synthetic sequences file generated via FLY_KC_EFS notebook.
99
+ It consists of:
100
+ Printing DNA sequences in nucleotide letters for different mutational steps.
101
+ Applying mutations to selected position and substation.
102
+ Plotting the findings.
103
+ Figures are saved to ./figures/repressors
104
+
105
+
106
+ FLY_KC_ATAC:
107
+ This notebook shows the experiments related to ATAC-seq on the brains of synthetic enhancer integrated fly lines.
108
+ Processed ATAC-seq data is in ./data/atac folder.
109
+ It consist of:
110
+ Reading ATAC-seq files and calculating the coverage on the enhancers
111
+ Figures are saved to ./figures/atac folder
112
+
113
+
114
+ FLY_EFS_TFModisco:
115
+ This notebook shows the TFModiscco experiments.
116
+ It uses the synthetic sequences file generated via FLY_KC_EFS notebook.
117
+ It consists of:
118
+ Calculating contribution scores on synthetic sequences.
119
+ Performing TFModisco on contribution scores.
120
+ Plotting identified patterns.
121
+ Saving trimmed patterns as txt file to be later used for motif analysis.
122
+ Result files are saved to ./data/tfmodisco folder
123
+ Figures are saved to ./figures/tfmodisco folder
124
+
125
+
126
+ FLY_Augmentation_Pruning:
127
+ This notebook shows the experiments related to dual-code enhancers
128
+ The cloned enhancers fasta file from Janssens et al is provided in ./data/augmentation_pruning
129
+ The notebook consists of:
130
+ Performing mutations on genomic enhancers to add a second code
131
+ Identifying genomic enhancers accessible in two or more cell lines
132
+ Performing mutations on genomic enhancers to remove the second code
133
+ Figures are saved to ./figures/augmentation_pruning folder
134
+
135
+
136
+ FLC_KC_Motif_Implanting:
137
+ This notebook shows how to design synthetic sequences by using motif implantation.
138
+ It consists of:
139
+ Performing motif implantation experiments.
140
+ Visualising motif distance and location preference experiments.
141
+ Identify enriched flankings at the motif implanted locations.
142
+ Cutting designed sequences.
143
+ Adding repressors sites by single mutations
144
+ Replacing the background sequence of an enhancer with 1 million random sequences
145
+ Intermediate files are saved to ./data/motif_embedding folder
146
+ Figures are saved to ./figures/motif_embedding
147
+
148
+
149
+ FLY_GAN:
150
+ This notebook shows how to load and analyse GAN generated sequences.
151
+ GAN generated sequences are provided in ./data/gan/generated_seqs folder.
152
+ Background sequences are provided in ./data/gan/background_seqs folder.
153
+ Genomic sequences are provided in ./data/gan folder
154
+ It consists of:
155
+ Reading GAN generated, genomic, and background sequences.
156
+ Scoring generated sequences with the DeepMEL model.
157
+ Visualising prediction scores on gan generated sequences at different training steps.
158
+ Comparing GC content of GAN generated and background sequences.
159
+ Visualising the results and contribution scores.
160
+ Intermediate files are saved to ./data/gan folder
161
+ Figures are saved to ./figures/gan folder
162
+
163
+
164
+ FLY_Cbust_Homer_Motif:
165
+ This notebook shows ClusterBuster and Homer experiments.
166
+ It uses contribution scores and TFModisco scores generated in the FLY_EFS_TFModisco notebook.
167
+ The motif database file is provided in ./data/tomtom folder
168
+ It consists of:
169
+ Getting TFModisco patterns and saving as txt file to be later used by ClusterBuster.
170
+ Running Tomtom on TFModisco patterns.
171
+ Running ClusterBuster by using TFModisco pattern PWMs on the sequences generated by in silico evolution, motif implantation, and GAN.
172
+ Running Homer using Random and Evolved sequences as foreground and background sequences, and vice versa.
173
+ ClusterBuster results are in ./data/cbust folder.
174
+ Homer results are in ./data/homer folder.
175
+ Figures are saved to ./figures/cbust folder
the_code/Fly/data/atac/OmniATAC_KC_EFS-1.bwa.out.fixmate.possorted.dedup.noblacklist.RPGCnormalized.bw ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41110f1d128673b31371986c6e1741678b58d11ee76d7b97488b7e738a0754d7
3
+ size 324169418
the_code/Fly/data/atac/OmniATAC_KC_EFS-2.bwa.out.fixmate.possorted.dedup.noblacklist.RPGCnormalized.bw ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a58de30e6058c49c63ca51e8fcfb341a612f9b24f05d008285e39f921c1c4f38
3
+ size 315943304
the_code/Fly/data/atac/OmniATAC_KC_EFS-3.bwa.out.fixmate.possorted.dedup.noblacklist.RPGCnormalized.bw ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68c76e4085eed97966e815acc5ce1649f087cb5dd4760e44b634a9939a077919
3
+ size 320646680
the_code/Fly/data/atac/OmniATAC_KC_EFS-4.bwa.out.fixmate.possorted.dedup.noblacklist.RPGCnormalized.bw ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbdd5cc72ccacc754f1f8340cd389de6c5b7e3eb248692e2174d8f9c03a562e7
3
+ size 345885665
the_code/Fly/data/atac/OmniATAC_KC_EFS-5.bwa.out.fixmate.possorted.dedup.noblacklist.RPGCnormalized.bw ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2c3631b19b502b9cb15e7643a480e3d74b0dd8a7afa100773ff87dba71b5630
3
+ size 295396816
the_code/Fly/data/atac/OmniATAC_KC_EFS-6.bwa.out.fixmate.possorted.dedup.noblacklist.RPGCnormalized.bw ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc84e676ab8fdbf6e82c1d4be9df482585e5b6bfffd7926e01f8bfa985ab2dc5
3
+ size 343429591
the_code/Fly/data/augmentation_pruning/Janssens_et_al_DFB_peaks_predictions.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94167c50276939deab28a0d719b3a34a76478e18c512e5e1cbd9fdee1e2bf5c8
3
+ size 472787785
the_code/Fly/data/augmentation_pruning/Janssens_et_al_enhancers.bed ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d39e456667de9db856edc552804104dfe859906515ee3fbfe854ea52ebf159c6
3
+ size 1631
the_code/Fly/data/augmentation_pruning/Janssens_et_al_enhancers.fa ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:304c6e43d7f52cc6257df9491520739829fef409f0a868843f7698a9d29eae3a
3
+ size 45505
the_code/Fly/data/cbust/BG_M1_results/BG_cbust_mot_array_merged.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b14509fdbb77f00e8634cadcd7b00430807de3336cfe48030d1b4f333e5e7bf
3
+ size 131052928
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_0.cb ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_0_pattern_0
2
+ 16.450648055832502 13.459621136590231 35.294117647058826 34.79561316051844
3
+ 16.151545363908276 51.4456630109671 11.56530408773679 20.837487537387837
4
+ 4.685942173479561 11.266201395812562 2.59222333000997 81.45563310069791
5
+ 90.32901296111665 1.3958125623130608 4.885343968095713 3.389830508474576
6
+ 38.2851445663011 2.0937188434695915 2.3928215353938187 57.22831505483549
7
+ 74.47657028913261 1.9940179461615155 3.489531405782652 20.03988035892323
8
+ 74.17746759720838 4.586241276171486 2.3928215353938187 18.843469591226324
9
+ 84.44666001994018 1.694915254237288 0.897308075772682 12.961116650049851
10
+ 5.18444666001994 3.8883349950149553 1.0967098703888334 89.83050847457628
11
+ 93.8185443668993 1.0967098703888334 2.293120638085743 2.7916251246261217
12
+ 21.036889332003987 8.075772681954138 55.63310069790628 15.254237288135593
13
+ 32.30309072781655 36.29112662013958 15.054835493519441 16.350947158524427
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_1.cb ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_0_pattern_1
2
+ 37.54889178617992 3.650586701434159 55.80182529335072 2.9986962190352022
3
+ 17.60104302477184 29.595827900912646 20.208604954367665 32.59452411994785
4
+ 3.650586701434159 31.55149934810952 25.293350717079534 39.50456323337679
5
+ 8.996088657105608 67.27509778357236 1.8252933507170794 21.903520208604952
6
+ 85.65840938722295 1.303780964797914 10.039113428943937 2.9986962190352022
7
+ 29.335071707953063 19.6870925684485 28.42242503259452 22.55541069100391
8
+ 4.3024771838331155 26.857887874837026 3.780964797913951 65.05867014341591
9
+ 6.779661016949152 55.41069100391134 32.724902216427644 5.084745762711865
10
+ 79.79139504563233 1.303780964797914 16.427640156453716 2.4771838331160363
11
+ 52.15123859191656 13.168187744458931 17.60104302477184 17.07953063885267
12
+ 0.7822685788787485 2.346805736636245 95.30638852672752 1.564537157757497
13
+ 2.4771838331160363 67.14471968709258 2.0860495436766624 28.292046936114733
14
+ 11.864406779661017 1.4341590612777053 80.70404172099087 5.9973924380704045
15
+ 14.21121251629726 11.21251629726206 23.859191655801826 50.717079530638856
16
+ 47.327249022164274 9.778357235984354 33.50717079530639 9.38722294654498
17
+ 55.14993481095176 16.6883963494133 8.865710560625816 19.295958279009128
18
+ 41.98174706649283 22.294654498044327 21.121251629726206 14.602346805736635
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_10.cb ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_0_pattern_10
2
+ 17.77777777777778 21.11111111111111 44.44444444444444 16.666666666666664
3
+ 16.666666666666664 14.444444444444443 36.666666666666664 32.22222222222222
4
+ 17.77777777777778 15.555555555555555 53.333333333333336 13.333333333333334
5
+ 25.555555555555554 17.77777777777778 35.55555555555556 21.11111111111111
6
+ 21.11111111111111 28.888888888888886 36.666666666666664 13.333333333333334
7
+ 41.11111111111111 18.88888888888889 22.22222222222222 17.77777777777778
8
+ 31.11111111111111 21.11111111111111 11.11111111111111 36.666666666666664
9
+ 7.777777777777778 7.777777777777778 76.66666666666667 7.777777777777778
10
+ 11.11111111111111 12.222222222222221 67.77777777777779 8.88888888888889
11
+ 1.1111111111111112 4.444444444444445 90.0 4.444444444444445
12
+ 21.11111111111111 10.0 5.555555555555555 63.33333333333333
13
+ 2.2222222222222223 1.1111111111111112 88.88888888888889 7.777777777777778
14
+ 16.666666666666664 10.0 65.55555555555556 7.777777777777778
15
+ 37.77777777777778 30.0 12.222222222222221 20.0
16
+ 38.88888888888889 17.77777777777778 22.22222222222222 21.11111111111111
17
+ 18.88888888888889 15.555555555555555 48.888888888888886 16.666666666666664
18
+ 11.11111111111111 12.222222222222221 65.55555555555556 11.11111111111111
19
+ 14.444444444444443 12.222222222222221 56.666666666666664 16.666666666666664
20
+ 8.88888888888889 22.22222222222222 52.22222222222223 16.666666666666664
21
+ 14.444444444444443 8.88888888888889 48.888888888888886 27.77777777777778
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_11.cb ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_0_pattern_11
2
+ 10.465116279069768 36.04651162790697 26.744186046511626 26.744186046511626
3
+ 29.069767441860467 20.930232558139537 19.767441860465116 30.23255813953488
4
+ 27.906976744186046 26.744186046511626 22.093023255813954 23.25581395348837
5
+ 20.930232558139537 27.906976744186046 31.3953488372093 19.767441860465116
6
+ 27.906976744186046 29.069767441860467 24.418604651162788 18.6046511627907
7
+ 24.418604651162788 17.441860465116278 38.372093023255815 19.767441860465116
8
+ 23.25581395348837 15.11627906976744 9.30232558139535 52.32558139534884
9
+ 9.30232558139535 1.1627906976744187 89.53488372093024 0.0
10
+ 15.11627906976744 44.18604651162791 13.953488372093023 26.744186046511626
11
+ 5.813953488372093 16.27906976744186 16.27906976744186 61.627906976744185
12
+ 11.627906976744185 68.6046511627907 3.488372093023256 16.27906976744186
13
+ 94.18604651162791 0.0 5.813953488372093 0.0
14
+ 24.418604651162788 33.72093023255814 20.930232558139537 20.930232558139537
15
+ 1.1627906976744187 29.069767441860467 10.465116279069768 59.30232558139535
16
+ 8.13953488372093 68.6046511627907 20.930232558139537 2.3255813953488373
17
+ 36.04651162790697 2.3255813953488373 50.0 11.627906976744185
18
+ 53.48837209302325 9.30232558139535 18.6046511627907 18.6046511627907
19
+ 1.1627906976744187 16.27906976744186 74.4186046511628 8.13953488372093
20
+ 4.651162790697675 24.418604651162788 9.30232558139535 61.627906976744185
21
+ 16.27906976744186 6.976744186046512 68.6046511627907 8.13953488372093
22
+ 23.25581395348837 15.11627906976744 31.3953488372093 30.23255813953488
23
+ 50.0 18.6046511627907 20.930232558139537 10.465116279069768
24
+ 59.30232558139535 10.465116279069768 8.13953488372093 22.093023255813954
25
+ 39.53488372093023 22.093023255813954 20.930232558139537 17.441860465116278
26
+ 27.906976744186046 25.581395348837212 23.25581395348837 23.25581395348837
27
+ 34.883720930232556 12.790697674418606 12.790697674418606 39.53488372093023
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_12.cb ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_0_pattern_12
2
+ 22.727272727272727 21.21212121212121 13.636363636363635 42.42424242424242
3
+ 24.242424242424242 42.42424242424242 18.181818181818183 15.151515151515152
4
+ 24.242424242424242 28.78787878787879 19.696969696969695 27.27272727272727
5
+ 21.21212121212121 25.757575757575758 27.27272727272727 25.757575757575758
6
+ 30.303030303030305 27.27272727272727 21.21212121212121 21.21212121212121
7
+ 16.666666666666664 37.878787878787875 24.242424242424242 21.21212121212121
8
+ 22.727272727272727 33.33333333333333 24.242424242424242 19.696969696969695
9
+ 39.39393939393939 31.818181818181817 15.151515151515152 13.636363636363635
10
+ 0.0 3.0303030303030303 4.545454545454546 92.42424242424242
11
+ 1.5151515151515151 0.0 98.48484848484848 0.0
12
+ 68.18181818181817 3.0303030303030303 6.0606060606060606 22.727272727272727
13
+ 0.0 98.48484848484848 0.0 1.5151515151515151
14
+ 3.0303030303030303 96.96969696969697 0.0 0.0
15
+ 28.78787878787879 6.0606060606060606 9.090909090909092 56.060606060606055
16
+ 6.0606060606060606 15.151515151515152 25.757575757575758 53.03030303030303
17
+ 15.151515151515152 15.151515151515152 57.57575757575758 12.121212121212121
18
+ 24.242424242424242 28.78787878787879 18.181818181818183 28.78787878787879
19
+ 21.21212121212121 34.84848484848485 25.757575757575758 18.181818181818183
20
+ 18.181818181818183 36.36363636363637 16.666666666666664 28.78787878787879
21
+ 13.636363636363635 36.36363636363637 33.33333333333333 16.666666666666664
22
+ 30.303030303030305 19.696969696969695 33.33333333333333 16.666666666666664
23
+ 27.27272727272727 31.818181818181817 18.181818181818183 22.727272727272727
24
+ 31.818181818181817 31.818181818181817 12.121212121212121 24.242424242424242
25
+ 22.727272727272727 31.818181818181817 21.21212121212121 24.242424242424242
26
+ 34.84848484848485 28.78787878787879 19.696969696969695 16.666666666666664
27
+ 15.151515151515152 25.757575757575758 24.242424242424242 34.84848484848485
28
+ 16.666666666666664 25.757575757575758 40.909090909090914 16.666666666666664
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_2.cb ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_0_pattern_2
2
+ 19.424460431654676 10.79136690647482 59.2326139088729 10.551558752997602
3
+ 18.465227817745802 15.587529976019185 42.92565947242206 23.021582733812952
4
+ 6.71462829736211 3.597122302158273 86.810551558753 2.877697841726619
5
+ 33.573141486810556 13.42925659472422 7.673860911270983 45.32374100719424
6
+ 3.117505995203837 2.6378896882494005 92.08633093525181 2.158273381294964
7
+ 10.551558752997602 4.556354916067146 74.34052757793765 10.551558752997602
8
+ 6.954436450839328 4.796163069544365 76.49880095923261 11.750599520383693
9
+ 22.062350119904075 14.388489208633093 22.302158273381295 41.247002398081534
10
+ 12.949640287769784 10.311750599520384 63.06954436450839 13.66906474820144
11
+ 17.985611510791365 17.26618705035971 41.96642685851319 22.781774580335732
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_3.cb ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_0_pattern_3
2
+ 30.412371134020617 5.670103092783505 63.4020618556701 0.5154639175257731
3
+ 17.783505154639176 24.742268041237114 15.721649484536082 41.75257731958763
4
+ 2.0618556701030926 28.350515463917525 20.876288659793815 48.71134020618557
5
+ 8.762886597938143 71.3917525773196 2.3195876288659796 17.525773195876287
6
+ 91.49484536082474 1.0309278350515463 6.443298969072164 1.0309278350515463
7
+ 24.484536082474225 28.09278350515464 23.969072164948454 23.45360824742268
8
+ 1.804123711340206 9.536082474226804 1.2886597938144329 87.37113402061856
9
+ 4.639175257731959 46.90721649484536 45.36082474226804 3.0927835051546393
10
+ 89.43298969072166 0.5154639175257731 9.02061855670103 1.0309278350515463
11
+ 50.77319587628865 10.309278350515463 31.958762886597935 6.958762886597938
12
+ 2.5773195876288657 82.21649484536083 1.5463917525773196 13.65979381443299
13
+ 4.639175257731959 53.350515463917525 3.350515463917526 38.659793814432994
14
+ 11.082474226804123 1.804123711340206 82.73195876288659 4.381443298969072
15
+ 10.824742268041238 9.278350515463918 27.31958762886598 52.57731958762887
16
+ 48.71134020618557 9.793814432989691 31.958762886597935 9.536082474226804
17
+ 53.350515463917525 18.298969072164947 9.02061855670103 19.329896907216497
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_4.cb ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_0_pattern_4
2
+ 8.970976253298153 8.970976253298153 68.33773087071239 13.720316622691293
3
+ 9.234828496042216 5.804749340369393 77.30870712401055 7.651715039577836
4
+ 9.234828496042216 2.638522427440633 82.58575197889182 5.540897097625329
5
+ 24.80211081794195 17.41424802110818 11.345646437994723 46.437994722955146
6
+ 3.95778364116095 3.6939313984168867 84.43271767810026 7.9155672823219
7
+ 11.345646437994723 7.387862796833773 72.55936675461741 8.70712401055409
8
+ 16.62269129287599 11.081794195250659 56.200527704485495 16.094986807387862
9
+ 27.70448548812665 18.20580474934037 18.20580474934037 35.88390501319261
10
+ 22.691292875989447 11.345646437994723 50.3957783641161 15.567282321899736
11
+ 25.065963060686013 15.8311345646438 37.46701846965699 21.63588390501319
12
+ 24.538258575197887 17.150395778364118 26.385224274406333 31.926121372031663
13
+ 19.261213720316622 12.401055408970976 44.327176781002635 24.010554089709764
14
+ 16.62269129287599 8.970976253298153 60.94986807387863 13.456464379947231
15
+ 17.678100263852244 13.984168865435356 42.21635883905013 26.121372031662272
16
+ 17.941952506596305 18.997361477572557 36.147757255936675 26.912928759894463
17
+ 22.427440633245382 16.62269129287599 30.87071240105541 30.07915567282322
18
+ 18.46965699208443 16.62269129287599 44.854881266490764 20.052770448548813
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_5.cb ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ >metacluster_0_pattern_5
2
+ 8.266666666666666 24.0 29.333333333333332 38.4
3
+ 21.333333333333336 1.6 74.13333333333333 2.933333333333333
4
+ 8.266666666666666 2.1333333333333333 1.6 88.0
5
+ 0.26666666666666666 99.2 0.26666666666666666 0.26666666666666666
6
+ 6.933333333333333 92.53333333333333 0.26666666666666666 0.26666666666666666
7
+ 4.0 7.199999999999999 4.266666666666667 84.53333333333333
8
+ 6.933333333333333 9.6 34.4 49.06666666666666
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_6.cb ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ >metacluster_0_pattern_6
2
+ 26.46239554317549 6.963788300835655 51.81058495821726 14.763231197771587
3
+ 2.2284122562674096 1.9498607242339834 89.97214484679665 5.8495821727019495
4
+ 3.3426183844011144 1.1142061281337048 92.47910863509749 3.064066852367688
5
+ 4.456824512534819 1.392757660167131 89.69359331476323 4.456824512534819
6
+ 16.71309192200557 9.47075208913649 0.8356545961002786 72.98050139275766
7
+ 3.6211699164345403 5.2924791086350975 79.38718662952647 11.699164345403899
8
+ 6.685236768802229 6.128133704735376 80.22284122562674 6.963788300835655
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_7.cb ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_0_pattern_7
2
+ 65.50522648083623 10.104529616724738 10.452961672473867 13.937282229965156
3
+ 2.0905923344947737 7.665505226480835 2.4390243902439024 87.8048780487805
4
+ 0.6968641114982579 90.59233449477352 2.7874564459930316 5.923344947735192
5
+ 3.484320557491289 0.6968641114982579 95.47038327526133 0.34843205574912894
6
+ 91.63763066202091 3.1358885017421603 3.484320557491289 1.7421602787456445
7
+ 1.3937282229965158 1.0452961672473868 0.6968641114982579 96.86411149825784
8
+ 35.19163763066202 4.181184668989547 14.285714285714285 46.34146341463415
9
+ 46.34146341463415 11.498257839721255 23.693379790940767 18.466898954703833
10
+ 28.9198606271777 23.693379790940767 24.041811846689896 23.34494773519164
11
+ 17.421602787456447 40.069686411149824 14.285714285714285 28.222996515679444
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_8.cb ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_0_pattern_8
2
+ 40.21739130434783 19.202898550724637 10.144927536231885 30.434782608695656
3
+ 18.115942028985508 7.246376811594203 58.69565217391305 15.942028985507244
4
+ 15.942028985507244 3.985507246376811 68.47826086956522 11.594202898550725
5
+ 1.8115942028985508 0.7246376811594203 96.73913043478261 0.7246376811594203
6
+ 1.0869565217391304 0.7246376811594203 96.73913043478261 1.4492753623188406
7
+ 0.7246376811594203 0.36231884057971014 97.82608695652173 1.0869565217391304
8
+ 5.797101449275362 5.072463768115942 77.89855072463769 11.231884057971014
9
+ 19.202898550724637 13.768115942028986 39.492753623188406 27.536231884057973
10
+ 30.79710144927536 21.3768115942029 4.710144927536232 43.11594202898551
11
+ 23.55072463768116 16.304347826086957 41.66666666666667 18.478260869565215
12
+ 24.27536231884058 22.463768115942027 28.26086956521739 25.0
13
+ 29.71014492753623 25.0 23.18840579710145 22.10144927536232
14
+ 24.637681159420293 17.02898550724638 32.2463768115942 26.08695652173913
15
+ 17.391304347826086 19.92753623188406 42.7536231884058 19.92753623188406
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_0_pattern_9.cb ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_0_pattern_9
2
+ 19.230769230769234 19.230769230769234 13.461538461538462 48.07692307692308
3
+ 7.6923076923076925 17.307692307692307 6.730769230769231 68.26923076923077
4
+ 99.03846153846155 0.9615384615384616 0.0 0.0
5
+ 3.8461538461538463 2.8846153846153846 0.0 93.26923076923077
6
+ 3.8461538461538463 2.8846153846153846 0.0 93.26923076923077
7
+ 3.8461538461538463 0.0 95.1923076923077 0.9615384615384616
8
+ 96.15384615384616 1.9230769230769231 1.9230769230769231 0.0
9
+ 5.769230769230769 3.8461538461538463 2.8846153846153846 87.5
10
+ 6.730769230769231 7.6923076923076925 4.807692307692308 80.76923076923077
11
+ 31.73076923076923 6.730769230769231 25.0 36.53846153846153
12
+ 22.115384615384613 18.269230769230766 26.923076923076923 32.69230769230769
13
+ 16.346153846153847 35.57692307692308 11.538461538461538 36.53846153846153
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_0.cb ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ >metacluster_1_pattern_0
2
+ 33.88888888888889 18.88888888888889 34.86111111111111 12.36111111111111
3
+ 30.833333333333336 33.88888888888889 8.75 26.52777777777778
4
+ 0.1388888888888889 0.0 99.16666666666667 0.6944444444444444
5
+ 99.72222222222223 0.0 0.2777777777777778 0.0
6
+ 0.0 0.0 0.1388888888888889 99.86111111111111
7
+ 1.3888888888888888 98.19444444444444 0.0 0.4166666666666667
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_1.cb ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_1_pattern_1
2
+ 10.16949152542373 48.09322033898305 19.703389830508474 22.033898305084744
3
+ 12.5 31.56779661016949 12.923728813559322 43.00847457627119
4
+ 6.991525423728813 26.69491525423729 20.33898305084746 45.97457627118644
5
+ 83.47457627118644 4.025423728813559 7.627118644067797 4.872881355932203
6
+ 95.55084745762711 1.4830508474576272 1.694915254237288 1.2711864406779663
7
+ 5.084745762711865 0.847457627118644 93.22033898305084 0.847457627118644
8
+ 67.58474576271186 1.9067796610169492 18.008474576271187 12.5
9
+ 40.88983050847458 32.83898305084746 2.9661016949152543 23.30508474576271
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_10.cb ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_1_pattern_10
2
+ 30.0 26.666666666666668 33.33333333333333 10.0
3
+ 30.0 11.666666666666666 33.33333333333333 25.0
4
+ 20.0 20.0 16.666666666666664 43.333333333333336
5
+ 35.0 28.333333333333332 21.666666666666668 15.0
6
+ 31.666666666666664 15.0 25.0 28.333333333333332
7
+ 23.333333333333332 21.666666666666668 28.333333333333332 26.666666666666668
8
+ 16.666666666666664 25.0 18.333333333333332 40.0
9
+ 25.0 28.333333333333332 25.0 21.666666666666668
10
+ 28.333333333333332 23.333333333333332 33.33333333333333 15.0
11
+ 56.666666666666664 18.333333333333332 8.333333333333332 16.666666666666664
12
+ 90.0 5.0 0.0 5.0
13
+ 18.333333333333332 26.666666666666668 3.3333333333333335 51.66666666666667
14
+ 1.6666666666666667 1.6666666666666667 5.0 91.66666666666666
15
+ 25.0 30.0 31.666666666666664 13.333333333333334
16
+ 11.666666666666666 48.333333333333336 21.666666666666668 18.333333333333332
17
+ 36.666666666666664 13.333333333333334 26.666666666666668 23.333333333333332
18
+ 41.66666666666667 20.0 16.666666666666664 21.666666666666668
19
+ 41.66666666666667 23.333333333333332 15.0 20.0
20
+ 35.0 11.666666666666666 15.0 38.333333333333336
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_2.cb ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_1_pattern_2
2
+ 15.384615384615385 26.098901098901102 40.38461538461539 18.13186813186813
3
+ 10.989010989010989 56.86813186813187 11.263736263736265 20.87912087912088
4
+ 93.4065934065934 2.4725274725274726 3.021978021978022 1.098901098901099
5
+ 90.10989010989012 4.1208791208791204 2.4725274725274726 3.296703296703297
6
+ 2.197802197802198 2.7472527472527473 7.417582417582418 87.63736263736264
7
+ 0.5494505494505495 3.021978021978022 1.098901098901099 95.32967032967034
8
+ 54.670329670329664 10.164835164835164 22.802197802197803 12.362637362637363
9
+ 18.956043956043956 34.065934065934066 34.61538461538461 12.362637362637363
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_3.cb ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_1_pattern_3
2
+ 63.24324324324324 8.108108108108109 14.594594594594595 14.054054054054054
3
+ 41.62162162162162 42.16216216216216 9.72972972972973 6.486486486486487
4
+ 1.6216216216216217 3.783783783783784 88.64864864864866 5.9459459459459465
5
+ 2.7027027027027026 3.2432432432432434 0.5405405405405406 93.51351351351352
6
+ 95.67567567567568 1.0810810810810811 2.1621621621621623 1.0810810810810811
7
+ 12.972972972972974 71.35135135135135 9.18918918918919 6.486486486486487
8
+ 8.108108108108109 15.135135135135137 30.270270270270274 46.48648648648649
9
+ 12.972972972972974 20.0 19.45945945945946 47.56756756756757
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_4.cb ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ >metacluster_1_pattern_4
2
+ 4.864864864864865 60.54054054054055 17.83783783783784 16.756756756756758
3
+ 50.27027027027027 24.324324324324326 8.64864864864865 16.756756756756758
4
+ 90.81081081081082 0.5405405405405406 3.2432432432432434 5.405405405405405
5
+ 1.0810810810810811 2.1621621621621623 0.5405405405405406 96.21621621621622
6
+ 0.5405405405405406 0.5405405405405406 0.5405405405405406 98.37837837837839
7
+ 1.0810810810810811 0.5405405405405406 98.37837837837839 0.0
8
+ 1.0810810810810811 4.324324324324325 3.2432432432432434 91.35135135135135
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_5.cb ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ >metacluster_1_pattern_5
2
+ 0.5847953216374269 12.865497076023392 4.093567251461988 82.45614035087719
3
+ 0.5847953216374269 1.1695906432748537 97.07602339181285 1.1695906432748537
4
+ 0.0 98.83040935672514 1.1695906432748537 0.0
5
+ 1.1695906432748537 4.093567251461988 93.56725146198829 1.1695906432748537
6
+ 0.5847953216374269 2.3391812865497075 2.3391812865497075 94.73684210526315
7
+ 57.30994152046783 9.35672514619883 25.146198830409354 8.187134502923977
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_6.cb ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_1_pattern_6
2
+ 8.333333333333332 28.47222222222222 11.805555555555555 51.388888888888886
3
+ 89.58333333333334 3.4722222222222223 4.861111111111112 2.083333333333333
4
+ 2.083333333333333 94.44444444444444 2.7777777777777777 0.6944444444444444
5
+ 0.0 0.6944444444444444 98.61111111111111 0.6944444444444444
6
+ 2.7777777777777777 94.44444444444444 2.083333333333333 0.6944444444444444
7
+ 74.30555555555556 4.861111111111112 20.833333333333336 0.0
8
+ 20.13888888888889 27.083333333333332 26.38888888888889 26.38888888888889
9
+ 25.694444444444443 20.833333333333336 12.5 40.97222222222222
10
+ 29.166666666666668 15.972222222222221 27.083333333333332 27.77777777777778
11
+ 12.5 32.63888888888889 19.444444444444446 35.41666666666667
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_7.cb ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_1_pattern_7
2
+ 5.825242718446602 5.825242718446602 6.796116504854369 81.55339805825243
3
+ 97.0873786407767 0.0 1.9417475728155338 0.9708737864077669
4
+ 0.0 99.02912621359224 0.9708737864077669 0.0
5
+ 2.912621359223301 7.766990291262135 74.75728155339806 14.563106796116504
6
+ 0.9708737864077669 4.854368932038835 0.9708737864077669 93.20388349514563
7
+ 53.398058252427184 21.35922330097087 11.650485436893204 13.592233009708737
8
+ 27.184466019417474 38.83495145631068 17.475728155339805 16.50485436893204
9
+ 12.62135922330097 15.53398058252427 44.66019417475729 27.184466019417474
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_8.cb ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_1_pattern_8
2
+ 15.730337078651685 33.70786516853933 14.606741573033707 35.95505617977528
3
+ 11.235955056179774 42.69662921348314 16.853932584269664 29.213483146067414
4
+ 31.46067415730337 8.98876404494382 8.98876404494382 50.56179775280899
5
+ 22.47191011235955 26.96629213483146 22.47191011235955 28.08988764044944
6
+ 21.34831460674157 16.853932584269664 41.57303370786517 20.224719101123593
7
+ 59.55056179775281 15.730337078651685 8.98876404494382 15.730337078651685
8
+ 23.595505617977526 17.97752808988764 38.20224719101123 20.224719101123593
9
+ 22.47191011235955 14.606741573033707 32.58426966292135 30.337078651685395
10
+ 19.101123595505616 25.842696629213485 19.101123595505616 35.95505617977528
11
+ 17.97752808988764 46.06741573033708 19.101123595505616 16.853932584269664
12
+ 23.595505617977526 19.101123595505616 23.595505617977526 33.70786516853933
13
+ 48.31460674157304 10.112359550561797 25.842696629213485 15.730337078651685
14
+ 16.853932584269664 8.98876404494382 5.617977528089887 68.53932584269663
15
+ 20.224719101123593 26.96629213483146 28.08988764044944 24.719101123595504
16
+ 30.337078651685395 26.96629213483146 20.224719101123593 22.47191011235955
17
+ 39.325842696629216 13.48314606741573 16.853932584269664 30.337078651685395
the_code/Fly/data/cbust/EFS_M1_motifs/KCEFS_M1_metacluster_1_pattern_9.cb ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ >metacluster_1_pattern_9
2
+ 17.333333333333336 44.0 18.666666666666668 20.0
3
+ 38.666666666666664 20.0 22.666666666666664 18.666666666666668
4
+ 76.0 5.333333333333334 6.666666666666667 12.0
5
+ 57.333333333333336 4.0 32.0 6.666666666666667
6
+ 44.0 2.666666666666667 42.66666666666667 10.666666666666668
7
+ 42.66666666666667 22.666666666666664 21.333333333333336 13.333333333333334
8
+ 17.333333333333336 33.33333333333333 26.666666666666668 22.666666666666664
9
+ 21.333333333333336 16.0 25.333333333333336 37.333333333333336
10
+ 44.0 14.666666666666666 14.666666666666666 26.666666666666668
11
+ 30.666666666666664 36.0 22.666666666666664 10.666666666666668
12
+ 10.666666666666668 5.333333333333334 46.666666666666664 37.333333333333336
13
+ 45.33333333333333 24.0 4.0 26.666666666666668
14
+ 17.333333333333336 37.333333333333336 30.666666666666664 14.666666666666666
the_code/Fly/data/cbust/EFS_M1_results/EFS_cbust_mot_array_merged.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef9301465fcf3ba5967621cd9eaa2703031d5d84794c470bf22eddfb52d7e40a
3
+ size 279002452