--- license: apache-2.0 task_categories: - image-to-video tags: - video-generation - trajectory-control - segmentation - bounding-box --- [[Paper](https://arxiv.org/pdf/2503.16421)] [[Project Page](https://quanhaol.github.io/magicmotion-site/)] [[Github](https://github.com/quanhaol/MagicMotion)] ## 🧙 MagicData Dataset ### 1. Dataset Introduction The MagicData Dataset, introduced in [MagicMotion](https://arxiv.org/pdf/2503.16421), is a comprehensive trajectory controllable video generation dataset with rich semantic annotations. This dataset features high-quality videos with precise segmentation masks and bounding boxes annotations, designed to advance the field of controllable video synthesis and understanding. The dataset consists of 23K diverse videos, each meticulously annotated with both pixel-level segmentation masks and object-level bounding boxes. Each video in the dataset is carefully curated to ensure high visual quality and annotation accuracy, making it suitable for training state-of-the-art video generation and understanding models. ### 2. File Structure ``` MagicData ├── videos │ ├── videoid_1.mp4 │ ├── videoid_2.mp4 │ ├── ... ├── masks │ ├── videoid_1 │ │ ├── annotated_frame_00000.png │ │ ├── annotated_frame_00001.png │ │ ├── ... │ ├── videoid_2 │ │ ├── ... ├── boxs │ ├── videoid_1 │ │ ├── annotated_frame_00000.png │ │ ├── annotated_frame_00001.png │ │ ├── ... │ ├── videoid_2 │ │ ├── ... ├── MagicData.csv # detailed information of each video ``` ### 3. Useful scripts - Data Extraction ```bash sudo apt-get install git-lfs git lfs install git clone https://huggingface.co/datasets/quanhaol/MagicData tar -xzvf boxs.tar.gz cat masks.tar.gz.part* > masks.tar.gz tar -xzvf masks.tar.gz cat videos.zip.part_* > videos.zip unzip videos.zip ``` ## Citation If you found this dataset useful, please cite our [paper](https://arxiv.org/pdf/2503.16421). ```bibtex @article{li2025magicmotion, title={Magicmotion: Controllable video generation with dense-to-sparse trajectory guidance}, author={Li, Quanhao and Xing, Zhen and Wang, Rui and Zhang, Hui and Dai, Qi and Wu, Zuxuan}, journal={arXiv preprint arXiv:2503.16421}, year={2025} } ``` ## Contact [liqh24@m.fudan.edu.cn](liqh24@m.fudan.edu.cn) [zxing20@fudan.edu.cn](zxing20@fudan.edu.cn)