--- language: en tags: [music, multimodal, qa, midi, vision] license: mit --- # MusiXQA 🎡 **MusiXQA** is a multimodal dataset for evaluating and training music sheet understanding systems. Each data sample is composed of: - A scanned music sheet image (`.png`) - Its corresponding MIDI file (`.mid`) - A structured annotation (from `metadata.json`) - Question–Answer (QA) pairs targeting musical structure, semantics, and optical music recognition (OMR) ![demo1](https://puar-playground.github.io/assets/img/2025-06-27/demo.jpg) --- ## πŸ“‚ Dataset Structure ``` MusiXQA/ β”œβ”€β”€ images.tar # PNG files of music sheets (e.g., 0000000.png) β”œβ”€β”€ midi.tar # MIDI files (e.g., 0000000.mid), compressed β”œβ”€β”€ train_qa_omr.json # OMR-tasks QA pairs (train split) β”œβ”€β”€ train_qa_simple.json # Simple musical info QAs (train split) β”œβ”€β”€ test_qa_omr.json # OMR-tasks QA pairs (test split) β”œβ”€β”€ test_qa_simple.json # Simple musical info QAs (test split) β”œβ”€β”€ metadata.json # Annotation for each document (e.g., key, time, instruments) ``` ## 🧾 Metadata The `metadata.json` file provides comprehensive annotations of the full music sheet content, facilitating research in symbolic music reasoning, score reconstruction, and multimodal alignment with audio or MIDI. ![demo2](https://puar-playground.github.io/assets/img/2025-06-27/header.jpg) ## ❓ QA Data Format Each QA file (e.g., train_qa_omr.json) is a list of QA entries like this: ``` { "doc_id": "0086400", "question": "Please extract the pitch and duration of all notes in the 2nd bar of the treble clef.", "answer": "qB4~ sB4 e.E5~ sE5 sB4 eB4 e.E5 sG#4", "encode_format": "beat" }, ``` β€’ doc_id: corresponds to a sample in images/, midi/, and metadata.json
β€’ question: natural language query
β€’ answer: ground truth answer
β€’ encode_format: how the input is encoded (e.g., "beat", "note", etc.)
## πŸŽ“ Reference If you use this dataset in your work, please cite it using the following reference: ``` @misc{chen2025musixqaadvancingvisualmusic, title={MusiXQA: Advancing Visual Music Understanding in Multimodal Large Language Models}, author={Jian Chen and Wenye Ma and Penghang Liu and Wei Wang and Tengwei Song and Ming Li and Chenguang Wang and Jiayu Qin and Ruiyi Zhang and Changyou Chen}, year={2025}, eprint={2506.23009}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2506.23009}, } ```