fact
stringlengths
4
3.31k
type
stringclasses
14 values
library
stringclasses
23 values
imports
listlengths
1
59
filename
stringlengths
20
105
symbolic_name
stringlengths
1
89
docstring
stringlengths
0
1.75k
abgr : UU := abelian_group_category.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr
null
make_abgr (X : setwithbinop) (is : isabgrop (@op X)) : abgr := X ,, is.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
make_abgr
null
abgrconstr (X : abmonoid) (inv0 : X → X) (is : isinv (@op X) 0 inv0) : abgr.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrconstr
null
abgrtogr : abgr → gr := λ X, make_gr (pr1 X) (pr1 (pr2 X)).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrtogr
null
abgrtoabmonoid : abgr → abmonoid := λ X, make_abmonoid (pr1 X) (pr1 (pr1 (pr2 X)) ,, pr2 (pr2 X)).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrtoabmonoid
null
abgr_of_gr (X : gr) (H : iscomm (@op X)) : abgr := make_abgr X (make_isabgrop (pr2 X) H).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_of_gr
null
abelian_group_morphism (X Y : abgr) : UU := abelian_group_category⟦X, Y⟧%cat.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abelian_group_morphism
null
abelian_group_morphism_to_group_morphism {X Y : abgr} (f : abelian_group_morphism X Y) : group_morphism X Y := pr1 f ,, pr12 f.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abelian_group_morphism_to_group_morphism
null
abelian_group_to_monoid_morphism {X Y : abgr} (f : abelian_group_morphism X Y) : abelian_monoid_morphism X Y.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abelian_group_to_monoid_morphism
null
make_abelian_group_morphism {X Y : abgr} (f : X → Y) (H : isbinopfun f) : abelian_group_morphism X Y := (f ,, H) ,, (((tt ,, binopfun_preserves_unit f H) ,, binopfun_preserves_inv f H) ,, tt).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
make_abelian_group_morphism
null
binopfun_to_abelian_group_morphism {X Y : abgr} (f : binopfun X Y) : abelian_group_morphism X Y := make_abelian_group_morphism f (binopfunisbinopfun f).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
binopfun_to_abelian_group_morphism
null
abelian_group_morphism_paths {X Y : abgr} (f g : abelian_group_morphism X Y) (H : (f : X → Y) = g) : f = g.
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abelian_group_morphism_paths
null
abelian_group_morphism_eq {X Y : abgr} {f g : abelian_group_morphism X Y} : (f = g) ≃ (∏ x, f x = g x).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abelian_group_morphism_eq
null
identity_abelian_group_morphism (X : abgr) : abelian_group_morphism X X := identity X.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
identity_abelian_group_morphism
null
composite_abelian_group_morphism {X Y Z : abgr} (f : abelian_group_morphism X Y) (g : abelian_group_morphism Y Z) : abelian_group_morphism X Z := (f · g)%cat.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
composite_abelian_group_morphism
null
unitabgr_isabgrop : isabgrop (@op unitabmonoid).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
unitabgr_isabgrop
*** Construction of the trivial abgr consisting of one element given by unit.
unitabgr : abgr := make_abgr unitabmonoid unitabgr_isabgrop.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
unitabgr
null
unel_abelian_group_morphism (X Y : abgr) : abelian_group_morphism X Y := binopfun_to_abelian_group_morphism (unelmonoidfun X Y).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
unel_abelian_group_morphism
null
abgrshombinop {X Y : abgr} (f g : abelian_group_morphism X Y) : abelian_group_morphism X Y.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrshombinop
*** Abelian group structure on morphism between abelian groups
abgrshombinop_inv_isbinopfun {X Y : abgr} (f : abelian_group_morphism X Y) : isbinopfun (λ x : X, grinv Y (f x)).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrshombinop_inv_isbinopfun
null
abgrshombinop_inv {X Y : abgr} (f : abelian_group_morphism X Y) : abelian_group_morphism X Y := make_abelian_group_morphism _ (abgrshombinop_inv_isbinopfun f).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrshombinop_inv
null
abgrshombinop_linvax {X Y : abgr} (f : abelian_group_morphism X Y) : abgrshombinop (abgrshombinop_inv f) f = unel_abelian_group_morphism X Y.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrshombinop_linvax
null
abgrshombinop_rinvax {X Y : abgr} (f : abelian_group_morphism X Y) : abgrshombinop f (abgrshombinop_inv f) = unel_abelian_group_morphism X Y.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrshombinop_rinvax
null
abgrshomabgr_isabgrop (X Y : abgr) : isabgrop (abgrshombinop (X := X) (Y := Y)).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrshomabgr_isabgrop
null
abgrshomabgr (X Y : abgr) : abgr.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrshomabgr
null
subabgr (X : abgr) := subgr X.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
subabgr
* 2. Subobjects
isabgrcarrier {X : abgr} (A : subgr X) : isabgrop (@op A).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isabgrcarrier
null
carrierofasubabgr {X : abgr} (A : subabgr X) : abgr.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
carrierofasubabgr
null
subabgr_incl {X : abgr} (A : subabgr X) : abelian_group_morphism A X := binopfun_to_abelian_group_morphism (X := A) (submonoid_incl A).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
subabgr_incl
null
abgr_kernel_hsubtype {A B : abgr} (f : abelian_group_morphism A B) : hsubtype A := monoid_kernel_hsubtype f.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_kernel_hsubtype
null
abgr_image_hsubtype {A B : abgr} (f : abelian_group_morphism A B) : hsubtype B := (λ y : B, ∃ x : A, (f x) = y).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_image_hsubtype
null
f : X → Y be a morphism of abelian groups.
Let
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
f
null
abgr_Kernel_subabgr_issubgr {A B : abgr} (f : abelian_group_morphism A B) : issubgr (abgr_kernel_hsubtype f).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_Kernel_subabgr_issubgr
** Kernel as abelian group
abgr_Kernel_subabgr {A B : abgr} (f : abelian_group_morphism A B) : @subabgr A := subgrconstr (@abgr_kernel_hsubtype A B f) (abgr_Kernel_subabgr_issubgr f).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_Kernel_subabgr
null
abgr_Kernel_abelian_group_morphism_isbinopfun {A B : abgr} (f : abelian_group_morphism A B) : isbinopfun (X := abgr_Kernel_subabgr f) (make_incl (pr1carrier (abgr_kernel_hsubtype f)) (isinclpr1carrier (abgr_kernel_hsubtype f))).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_Kernel_abelian_group_morphism_isbinopfun
** The inclusion Kernel f --> X is a morphism of abelian groups
abgr_image_issubgr {A B : abgr} (f : abelian_group_morphism A B) : issubgr (abgr_image_hsubtype f).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_image_issubgr
** Image of f is a subgroup
abgr_image {A B : abgr} (f : abelian_group_morphism A B) : @subabgr B := @subgrconstr B (@abgr_image_hsubtype A B f) (abgr_image_issubgr f).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_image
null
isabgrquot {X : abgr} (R : binopeqrel X) : isabgrop (@op (setwithbinopquot R)).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isabgrquot
* 4. Quotient objects
abgrquot {X : abgr} (R : binopeqrel X) : abgr.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrquot
null
isabgrdirprod (X Y : abgr) : isabgrop (@op (setwithbinopdirprod X Y)).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isabgrdirprod
* 5. Direct products
abgrdirprod (X Y : abgr) : abgr.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdirprod
null
hrelabgrdiff (X : abmonoid) : hrel (X × X) := λ xa1 xa2, ∃ (x0 : X), (pr1 xa1 + pr2 xa2) + x0 = (pr1 xa2 + pr2 xa1) + x0.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
hrelabgrdiff
null
abgrdiffphi (X : abmonoid) (xa : X × X) : X × (totalsubtype X) := pr1 xa ,, make_carrier (λ x : X, htrue) (pr2 xa) tt.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffphi
null
hrelabgrdiff' (X : abmonoid) : hrel (X × X) := λ xa1 xa2, eqrelabmonoidfrac X (totalsubmonoid X) (abgrdiffphi X xa1) (abgrdiffphi X xa2).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
hrelabgrdiff
null
logeqhrelsabgrdiff (X : abmonoid) : hrellogeq (hrelabgrdiff' X) (hrelabgrdiff X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
logeqhrelsabgrdiff
null
iseqrelabgrdiff (X : abmonoid) : iseqrel (hrelabgrdiff X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
iseqrelabgrdiff
null
eqrelabgrdiff (X : abmonoid) : @eqrel (abmonoiddirprod X X) := make_eqrel _ (iseqrelabgrdiff X).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
eqrelabgrdiff
null
isbinophrelabgrdiff (X : abmonoid) : @isbinophrel (abmonoiddirprod X X) (hrelabgrdiff X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isbinophrelabgrdiff
null
binopeqrelabgrdiff (X : abmonoid) : binopeqrel (abmonoiddirprod X X) := make_binopeqrel (eqrelabgrdiff X) (isbinophrelabgrdiff X).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
binopeqrelabgrdiff
null
abgrdiffcarrier (X : abmonoid) : abmonoid := @abmonoidquot (abmonoiddirprod X X) (binopeqrelabgrdiff X).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffcarrier
null
abgrdiffinvint (X : abmonoid) : X × X → X × X := λ xs, pr2 xs ,, pr1 xs.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffinvint
null
abgrdiffinvcomp (X : abmonoid) : iscomprelrelfun (hrelabgrdiff X) (eqrelabgrdiff X) (abgrdiffinvint X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffinvcomp
null
abgrdiffinv (X : abmonoid) : abgrdiffcarrier X → abgrdiffcarrier X := setquotfun (hrelabgrdiff X) (eqrelabgrdiff X) (abgrdiffinvint X) (abgrdiffinvcomp X).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffinv
null
abgrdiffisinv (X : abmonoid) : isinv (@op (abgrdiffcarrier X)) 0 (abgrdiffinv X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffisinv
null
abgrdiff (X : abmonoid) : abgr := abgrconstr (abgrdiffcarrier X) (abgrdiffinv X) (abgrdiffisinv X).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiff
null
prabgrdiff (X : abmonoid) : X → X → abgrdiff X := λ x x' : X, setquotpr (eqrelabgrdiff X) (x ,, x').
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
prabgrdiff
null
weqabgrdiffint (X : abmonoid) : weq (X × X) (X × totalsubtype X) := weqdirprodf (idweq X) (invweq (weqtotalsubtype X)).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
weqabgrdiffint
* 7. Abelian group of fractions and abelian monoid of fractions
weqabgrdiff (X : abmonoid) : weq (abgrdiff X) (abmonoidfrac X (totalsubmonoid X)).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
weqabgrdiff
null
toabgrdiff (X : abmonoid) (x : X) : abgrdiff X := setquotpr _ (x ,, 0).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
toabgrdiff
* 8. Canonical homomorphism to the abelian group of fractions
isbinopfuntoabgrdiff (X : abmonoid) : isbinopfun (toabgrdiff X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isbinopfuntoabgrdiff
null
isinclprabgrdiff (X : abmonoid) (iscanc : ∏ x : X, isrcancelable (@op X) x) : ∏ x' : X, isincl (λ x, prabgrdiff X x x').
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isinclprabgrdiff
* 9. Abelian group of fractions in the case when all elements are cancelable
isincltoabgrdiff (X : abmonoid) (iscanc : ∏ x : X, isrcancelable (@op X) x) : isincl (toabgrdiff X) := isinclprabgrdiff X iscanc 0.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isincltoabgrdiff
null
isdeceqabgrdiff (X : abmonoid) (iscanc : ∏ x : X, isrcancelable (@op X) x) (is : isdeceq X) : isdeceq (abgrdiff X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isdeceqabgrdiff
null
abgrdiffrelint (X : abmonoid) (L : hrel X) : hrel (setwithbinopdirprod X X) := λ xa yb, ∃ (c0 : X), L ((pr1 xa + pr2 yb) + c0) ((pr1 yb + pr2 xa) + c0).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffrelint
* 10. Relations on the abelian group of fractions
abgrdiffrelint' (X : abmonoid) (L : hrel X) : hrel (setwithbinopdirprod X X) := λ xa1 xa2, abmonoidfracrelint _ (totalsubmonoid X) L (abgrdiffphi X xa1) (abgrdiffphi X xa2).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffrelint
null
logeqabgrdiffrelints (X : abmonoid) (L : hrel X) : hrellogeq (abgrdiffrelint' X L) (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
logeqabgrdiffrelints
null
iscomprelabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isbinophrel L) : iscomprelrel (eqrelabgrdiff X) (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
iscomprelabgrdiffrelint
null
abgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) := quotrel (iscomprelabgrdiffrelint X is).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffrel
null
abgrdiffrel' (X : abmonoid) {L : hrel X} (is : isbinophrel L) : hrel (abgrdiff X) := λ x x', abmonoidfracrel X (totalsubmonoid X) (isbinoptoispartbinop _ _ is) (weqabgrdiff X x) (weqabgrdiff X x').
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffrel
null
logeqabgrdiffrels (X : abmonoid) {L : hrel X} (is : isbinophrel L) : hrellogeq (abgrdiffrel' X is) (abgrdiffrel X is).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
logeqabgrdiffrels
null
istransabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : istrans L) : istrans (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
istransabgrdiffrelint
null
istransabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : istrans L) : istrans (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
istransabgrdiffrel
null
issymmabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : issymm L) : issymm (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
issymmabgrdiffrelint
null
issymmabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : issymm L) : issymm (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
issymmabgrdiffrel
null
isreflabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : isrefl L) : isrefl (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isreflabgrdiffrelint
null
isreflabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : isrefl L) : isrefl (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isreflabgrdiffrel
null
ispoabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : ispreorder L) : ispreorder (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
ispoabgrdiffrelint
null
ispoabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : ispreorder L) : ispreorder (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
ispoabgrdiffrel
null
iseqrelabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : iseqrel L) : iseqrel (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
iseqrelabgrdiffrelint
null
iseqrelabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : iseqrel L) : iseqrel (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
iseqrelabgrdiffrel
null
isantisymmnegabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : isantisymmneg L) : isantisymmneg (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isantisymmnegabgrdiffrel
null
isantisymmabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : isantisymm L) : isantisymm (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isantisymmabgrdiffrel
null
isirreflabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : isirrefl L) : isirrefl (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isirreflabgrdiffrel
null
isasymmabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : isasymm L) : isasymm (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isasymmabgrdiffrel
null
iscoasymmabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : iscoasymm L) : iscoasymm (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
iscoasymmabgrdiffrel
null
istotalabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : istotal L) : istotal (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
istotalabgrdiffrel
null
iscotransabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : iscotrans L) : iscotrans (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
iscotransabgrdiffrel
null
isStrongOrder_abgrdiff {X : abmonoid} (gt : hrel X) (Hgt : isbinophrel gt) : isStrongOrder gt → isStrongOrder (abgrdiffrel X Hgt).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isStrongOrder_abgrdiff
null
StrongOrder_abgrdiff {X : abmonoid} (gt : StrongOrder X) (Hgt : isbinophrel gt) : StrongOrder (abgrdiff X) := abgrdiffrel X Hgt,, isStrongOrder_abgrdiff gt Hgt (pr2 gt).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
StrongOrder_abgrdiff
null
abgrdiffrelimpl (X : abmonoid) {L L' : hrel X} (is : isbinophrel L) (is' : isbinophrel L') (impl : ∏ x x', L x x' → L' x x') (x x' : abgrdiff X) (ql : abgrdiffrel X is x x') : abgrdiffrel X is' x x'.
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffrelimpl
null
abgrdiffrellogeq (X : abmonoid) {L L' : hrel X} (is : isbinophrel L) (is' : isbinophrel L') (lg : ∏ x x', L x x' <-> L' x x') (x x' : abgrdiff X) : (abgrdiffrel X is x x') <-> (abgrdiffrel X is' x x').
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffrellogeq
null
isbinopabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isbinophrel L) : @isbinophrel (setwithbinopdirprod X X) (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isbinopabgrdiffrelint
null
isbinopabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) : @isbinophrel (abgrdiff X) (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isbinopabgrdiffrel
null
isdecabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isinvbinophrel L) (isl : isdecrel L) : isdecrel (abgrdiffrelint X L).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isdecabgrdiffrelint
null
isdecabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isi : isinvbinophrel L) (isl : isdecrel L) : isdecrel (abgrdiffrel X is).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isdecabgrdiffrel
null
iscomptoabgrdiff (X : abmonoid) {L : hrel X} (is : isbinophrel L) : iscomprelrelfun L (abgrdiffrel X is) (toabgrdiff X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
iscomptoabgrdiff
* 11. Relations and the canonical homomorphism to [abgrdiff]
abmonoid : UU := abelian_monoid_category.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianMonoids.v
abmonoid
null
make_abmonoid (t : setwithbinop) (H : isabmonoidop (@op t)) : abmonoid := t ,, H.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianMonoids.v
make_abmonoid
null
abmonoidtomonoid : abmonoid → monoid := λ X, make_monoid (pr1 X) (pr1 (pr2 X)).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianMonoids.v
abmonoidtomonoid
null
commax (X : abmonoid) : iscomm (@op X) := pr2 (pr2 X).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianMonoids.v
commax
null