Update README.md
Browse files
README.md
CHANGED
|
@@ -3,36 +3,90 @@
|
|
| 3 |
tags:
|
| 4 |
- pyterrier
|
| 5 |
- pyterrier-artifact
|
| 6 |
-
- pyterrier-
|
| 7 |
-
- pyterrier-
|
| 8 |
task_categories:
|
| 9 |
- text-retrieval
|
| 10 |
viewer: false
|
| 11 |
---
|
| 12 |
|
| 13 |
-
#
|
| 14 |
|
| 15 |
## Description
|
| 16 |
|
| 17 |
-
|
| 18 |
|
| 19 |
## Usage
|
| 20 |
|
|
|
|
| 21 |
```python
|
| 22 |
-
|
| 23 |
import pyterrier as pt
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
```
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
*TODO: Provide benchmarks for the artifact.*
|
| 31 |
|
| 32 |
## Reproduction
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
```python
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
```
|
| 37 |
|
| 38 |
## Metadata
|
|
|
|
| 3 |
tags:
|
| 4 |
- pyterrier
|
| 5 |
- pyterrier-artifact
|
| 6 |
+
- pyterrier-dr
|
| 7 |
+
- pyterrier-flex
|
| 8 |
task_categories:
|
| 9 |
- text-retrieval
|
| 10 |
viewer: false
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# Flex Index of MSMarco Passage using TASB
|
| 14 |
|
| 15 |
## Description
|
| 16 |
|
| 17 |
+
This artifact represents the retrieval index of the MSMarco Passage collection produced by the TaASB model (more info [here](https://pyterrier.readthedocs.io/en/latest/_modules/pyterrier_dr/hgf_models.html#TasB)).
|
| 18 |
|
| 19 |
## Usage
|
| 20 |
|
| 21 |
+
The following code snippete shows how to use this artifact to perform a dense retrieval experiment:
|
| 22 |
```python
|
| 23 |
+
|
| 24 |
import pyterrier as pt
|
| 25 |
+
import pyterrier_dr
|
| 26 |
+
from pyterrier.measures import *
|
| 27 |
+
|
| 28 |
+
# Load the artifact
|
| 29 |
+
index = pt.Artifact.from_hf('ntonellotto/msmarco-passage.tasb.flex')
|
| 30 |
+
# Load the query encoder (must be the same used to create the artifact)
|
| 31 |
+
model = pyterrier_dr.TasB()
|
| 32 |
+
# Load the dataset
|
| 33 |
+
dataset = pt.get_dataset('msmarco_passage')
|
| 34 |
+
# Run the PyTerrier experiment
|
| 35 |
+
pt.Experiment(
|
| 36 |
+
[model >> index],
|
| 37 |
+
dataset.get_topics('test-2019'),
|
| 38 |
+
dataset.get_qrels('test-2019'),
|
| 39 |
+
eval_metrics=[RR@10, Recall(rel=2)@100, Recall@100, nDCG@10, "mrt"],
|
| 40 |
+
names=["Dense Retrieval"]
|
| 41 |
+
)
|
| 42 |
```
|
| 43 |
|
| 44 |
+
You should get something like:
|
| 45 |
+
| name | RR@10 | R(rel=2)@100 | R@100 | nDCG@10 | mrt |
|
| 46 |
+
|------------------|----------|---------------|----------|----------|------------|
|
| 47 |
+
| Dense Retrieval | 0.976744 | 0.607269 | 0.514744 | 0.718238 | 280.014161 |
|
| 48 |
|
|
|
|
| 49 |
|
| 50 |
## Reproduction
|
| 51 |
|
| 52 |
+
### Generating the data
|
| 53 |
+
|
| 54 |
+
The data has been generated using the following code snippet:
|
| 55 |
+
|
| 56 |
+
```python
|
| 57 |
+
import torch
|
| 58 |
+
import pyterrier as pt
|
| 59 |
+
import pyterrier_dr
|
| 60 |
+
|
| 61 |
+
# Select the available Torch's backend
|
| 62 |
+
if torch.backends.mps.is_available():
|
| 63 |
+
device = torch.device("mps")
|
| 64 |
+
elif torch.cuda.is_available():
|
| 65 |
+
device = torch.device("cuda")
|
| 66 |
+
else:
|
| 67 |
+
device = torch.device("cpu")
|
| 68 |
+
print(f"Using device: {device}")
|
| 69 |
+
# Create the encoder model
|
| 70 |
+
tct = pyterrier_dr.TasB(device=device, batch_size=256)
|
| 71 |
+
# Create the destination index folder
|
| 72 |
+
index = pyterrier_dr.FlexIndex("./msmarco-passage.tasb.flex")
|
| 73 |
+
# Indexing
|
| 74 |
+
(tct >> index).index(pt.get_dataset("msmarco_passage").get_corpus_iter())
|
| 75 |
+
|
| 76 |
+
print(f"Indexed {len(index)} documents")
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
### Uploading the data
|
| 80 |
+
|
| 81 |
+
To upload the index to Hugging Face, use the following code snippet (the dataset sheet will be created automatically):
|
| 82 |
+
|
| 83 |
```python
|
| 84 |
+
import pyterrier as pt
|
| 85 |
+
|
| 86 |
+
# Load the artifact from disk
|
| 87 |
+
artifact = pt.Artifact.load("./msmarco-passage.tasb.flex")
|
| 88 |
+
# Upload the artifact to HF
|
| 89 |
+
artifact.to_hf('ntonellotto/msmarco-passage.tasb.flex')
|
| 90 |
```
|
| 91 |
|
| 92 |
## Metadata
|