# -*- encoding: utf-8 -*- """ @File : FE-Wireframe.py @Time : 2025/08/31 23:00:00 @Author : lh9171338 @Version : 1.0 @Contact : 2909171338@qq.com """ import os import numpy as np import json import datasets from datasets import Features, Image, Sequence, Value _CITATION = """\ @ARTICLE{10323537, author={Yu, Huai and Li, Hao and Yang, Wen and Yu, Lei and Xia, Gui-Song}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, title={Detecting Line Segments in Motion-Blurred Images With Events}, year={2023}, pages={1-16}, doi={10.1109/TPAMI.2023.3334877} } """ _DESCRIPTION = """\ This new dataset is designed for motion-blurred image line segment detection with events. """ _HOMEPAGE = "" _LICENSE = "mit" class FEBlurframe(datasets.GeneratorBasedBuilder): """FE-Blurframe Dataset""" VERSION = datasets.Version("1.1.0") def _info(self): """infos""" features = Features( { "blur_image": Image(), "start_image": Image(), "end_image": Image(), "events": { "image_size": Sequence(Value("int32")), "x": Sequence(Value("int16")), "y": Sequence(Value("int16")), "t": Sequence(Value("int32")), "p": Sequence(Value("bool")), }, "H": Sequence(Sequence(Value("float32"))), # shape [3, 3] "image_size": Sequence(Value("int32")), # shape [2] "junc": Sequence(Sequence(Value("float32"))), # shape [M, 2] "flow": Sequence(Sequence(Value("float32"))), # shape [M, 2] "lines": Sequence(Sequence(Value("float32"))), # shape [N, 4] "edges_positive": Sequence(Sequence(Value("float32"))), # shape [Np, 2] } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """split generators""" data_files = { "train": "train.jsonl", "test": "test.jsonl", "events_raw": "events_raw.zip", "images-blur": "images-blur.zip", "images-start": "images-start.zip", "images-end": "images-end.zip", } data_files = dl_manager.download_and_extract(data_files) print(f"data_files: {data_files}") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_files["train"], "data_files": data_files, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": data_files["test"], "data_files": data_files, }, ), ] def _generate_examples(self, filepath, data_files): """generate examples""" with open(filepath, encoding="utf-8") as f: lines = f.readlines() for idx, line in enumerate(lines): info = json.loads(line) new_info = dict() new_info["blur_image"] = os.path.join(data_files["images-blur"], "images-blur", info["filename"]) new_info["start_image"] = os.path.join(data_files["images-start"], "images-start", info["filename"]) new_info["end_image"] = os.path.join(data_files["images-end"], "images-end", info["filename"]) events = np.load( os.path.join(data_files["events_raw"], "events_raw", info["filename"].replace(".png", ".npz")) ) new_info["events"] = dict(**events) for key in ["image_size", "H", "junc", "flow", "lines", "edges_positive"]: new_info[key] = info[key] yield idx, new_info