blumenstiel commited on
Commit
d0d7f4c
·
verified ·
1 Parent(s): 7f9b66f

Update terramesh.py

Browse files
Files changed (1) hide show
  1. terramesh.py +85 -33
terramesh.py CHANGED
@@ -21,11 +21,11 @@ import io
21
  import re
22
  import zarr
23
  import torch
 
24
  import fsspec
25
  import braceexpand
26
- import numpy as np
27
  import albumentations
28
- import warnings
29
  import webdataset as wds
30
  from collections.abc import Callable, Iterable
31
  from torch.utils.data._utils.collate import default_collate
@@ -75,29 +75,62 @@ statistics = {
75
 
76
  def build_terramesh_dataset(
77
  path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
78
- modalities: list | str = None,
79
  split: str = "val",
80
  urls: str | None = None,
 
81
  batch_size: int = 8,
82
  return_metadata: bool = False,
83
  shuffle: bool = True,
84
- *args, **kwargs,
 
 
 
85
  ):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  if len(modalities) == 1:
 
 
 
 
87
  # Build standard WebDataset for single modality
88
  dataset = build_wds_dataset(
89
  path=path,
90
- modality=modalities[0],
91
  split=split,
92
  urls=urls,
93
  batch_size=batch_size,
 
94
  return_metadata=return_metadata,
95
  shuffle=shuffle,
96
- *args, **kwargs
 
 
 
97
  )
98
  return dataset
99
 
100
  else:
 
 
 
101
  # Build custom multi-modal dataset
102
  dataset = build_multimodal_dataset(
103
  path=path,
@@ -105,9 +138,12 @@ def build_terramesh_dataset(
105
  split=split,
106
  urls=urls,
107
  batch_size=batch_size,
 
108
  return_metadata=return_metadata,
109
  shuffle=shuffle,
110
- *args, **kwargs,
 
 
111
  )
112
  return dataset
113
 
@@ -118,6 +154,10 @@ def zarr_decoder(key, value):
118
  return zarr.open_consolidated(mapper, mode="r")["bands"][...]
119
 
120
 
 
 
 
 
121
  def zarr_metadata_decoder(sample):
122
  for key, value in list(sample.items()):
123
  if key == "zarr.zip" or key.endswith(".zarr.zip"):
@@ -134,7 +174,12 @@ def zarr_metadata_decoder(sample):
134
  if data["time"][...] > 1e6: # DEM has no valid timestamp (value = 0)
135
  time_key = "time" if key == "zarr.zip" else "time_" + key
136
  sample[time_key] = data["time"][...] # Integer values of type "datetime64[ns]"
137
- # TODO Other types are currently not decoded, fall back to autodecode
 
 
 
 
 
138
 
139
  return sample
140
 
@@ -167,6 +212,10 @@ def build_wds_dataset(
167
  transform: Callable = None,
168
  shuffle: bool = True,
169
  return_metadata: bool = False,
 
 
 
 
170
  *args, **kwargs
171
  ):
172
  if urls is None:
@@ -183,10 +232,23 @@ def build_wds_dataset(
183
  [os.path.join(path, split, modality, f) for f in files]
184
  )
185
 
186
- kwargs["shardshuffle"] = kwargs.get("shardshuffle", 100) * shuffle # Shuffle shard
 
 
187
 
188
  # Build dataset
189
- dataset = wds.WebDataset(urls, *args, **kwargs)
 
 
 
 
 
 
 
 
 
 
 
190
 
191
  # Decode from bytes to numpy arrays, etc.
192
  dataset = dataset.map(zarr_metadata_decoder) if return_metadata else dataset.decode(zarr_decoder)
@@ -216,7 +278,10 @@ def build_multimodal_dataset(
216
  transform: Callable = None,
217
  shuffle: bool = True,
218
  return_metadata: bool = False,
219
- *args, **kwargs
 
 
 
220
  ):
221
  if modalities is None:
222
  modalities = ["S2L2A", "S2L1C", "S2RGB", "S1GRD", "S1RTC", "DEM", "NDVI", "LULC"] # Default
@@ -236,21 +301,14 @@ def build_multimodal_dataset(
236
  urls = (os.path.join(path, split, majortom_mod, split_files["majortom"][split][0])
237
  + "::" + os.path.join(path, split, ssl4eos12_mod, split_files["ssl4eos12"][split][0]))
238
 
239
- dataset = build_datapipeline(urls, transform, batch_size, shuffle, return_metadata, *args, **kwargs)
240
- return dataset
241
-
242
-
243
- def build_datapipeline(urls, transform, batch_size, shuffle, return_metadata, *args, **kwargs):
244
- shardshuffle = kwargs.get("shardshuffle", 100) * shuffle # Shuffle shard
245
- deterministic = kwargs.get("deterministic", False)
246
- seed = kwargs.get("seed", 0)
247
-
248
- datapipeline = wds.DataPipeline(
249
  # Infinitely sample shards from the shard list with replacement. Each worker is seeded independently.
250
  (
251
- wds.ResampledShards(urls, deterministic=deterministic, seed=seed)
252
  if shuffle else wds.SimpleShardList(urls)
253
  ),
 
 
254
  multi_tarfile_samples, # Extract individual samples from multi-modal tar files
255
  wds.shuffle(shardshuffle, seed=seed), # Shuffle with a buffer of given size
256
  (
@@ -271,7 +329,7 @@ def build_datapipeline(urls, transform, batch_size, shuffle, return_metadata, *a
271
  else wds.map(identity)
272
  ),
273
  )
274
- return datapipeline
275
 
276
 
277
  def extract_modality_names(s):
@@ -308,7 +366,6 @@ def remove_extensions(sample):
308
 
309
  def multi_tarfile_samples(
310
  src_iter: Iterable[dict],
311
- handler: Callable[[Exception], bool] = warn_and_continue,
312
  ):
313
  """
314
  This function is adapted from https://github.com/apple/ml-4m/blob/main/fourm/data/unified_datasets.py.
@@ -329,7 +386,6 @@ def multi_tarfile_samples(
329
  e.g. {"url": "shard_root_train_[rgb,caption]/00000.tar"}, {"url": "shard_root_train_[rgb,caption]/00001.tar"}, ...
330
  This function will also work when no square braces for multiple modalities are used, e.g. {"url": "shard_root_train/00000.tar"}, ...
331
  It can be a drop-in replacement for wds.tarfile_samples.
332
- handler: Function that handles exceptions. If it returns True, the shard is skipped. If it returns False, the function exits.
333
 
334
  Yields:
335
  Dictionary of aligned samples from all modalities.
@@ -375,13 +431,9 @@ def multi_tarfile_samples(
375
  yield merged_dict
376
 
377
  except Exception as e:
378
- print(e)
379
- print(f"Exception occurred while processing {src['url']}.")
380
- if handler(e):
381
- print("Skipping shard...")
382
- continue
383
- else:
384
- break
385
 
386
 
387
  class Transpose(albumentations.ImageOnlyTransform):
@@ -410,7 +462,7 @@ class Transpose(albumentations.ImageOnlyTransform):
410
 
411
  def default_non_image_transform(array):
412
  if hasattr(array, "dtype") and (array.dtype == float or array.dtype == int):
413
- return torch.from_numpy(array)
414
  else:
415
  return array
416
 
 
21
  import re
22
  import zarr
23
  import torch
24
+ import warnings
25
  import fsspec
26
  import braceexpand
 
27
  import albumentations
28
+ import numpy as np
29
  import webdataset as wds
30
  from collections.abc import Callable, Iterable
31
  from torch.utils.data._utils.collate import default_collate
 
75
 
76
  def build_terramesh_dataset(
77
  path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
78
+ modalities: list[str] | str = None,
79
  split: str = "val",
80
  urls: str | None = None,
81
+ transform: Callable = None,
82
  batch_size: int = 8,
83
  return_metadata: bool = False,
84
  shuffle: bool = True,
85
+ shardshuffle: int = 100,
86
+ deterministic: bool = False,
87
+ seed: int = None,
88
+ **kwargs,
89
  ):
90
+ """
91
+ Builds a dataset for TerraMesh, see https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh.
92
+
93
+ :param path: URL or local path to dataset root that with data structure ./{split}/{modality}/shard_{id}.tar
94
+ :param modalities: List of modalities or a single modality name
95
+ :param split: Split name ("train", "val"). Default to "val".
96
+ :param urls: Specify custom shard urls instead of providing the path, modalities, and split.
97
+ :param batch_size: Specify batch size to load batches instead of samples via webdataset (Recommended).
98
+ It requires batch_size=None in the data loader constructor.
99
+ :param transform: Transform function to apply to the data, use MultimodalTransforms.
100
+ :param return_metadata: Load center coordinates, timestamp (ns as int) and cloud mask (if available).
101
+ :param shuffle: Shuffle samples and shards. Default to True.
102
+ :param shardshuffle: The number of shards to shuffle, or None. Defaults to 100.
103
+ :param deterministic: Whether to use deterministic shuffling. Defaults to False.
104
+ :param seed: Random seed for shuffling. Defaults to None which uses random seeds.
105
+ :param kwargs: Optional keyword arguments for single-modality which are passed to WebDataset constructor.
106
+ :return: WebDataset (single modality) or DataPipeline (multiple modalities)
107
+ """
108
  if len(modalities) == 1:
109
+ # Single modality
110
+ modalities = modalities[0]
111
+
112
+ if isinstance(modalities, str):
113
  # Build standard WebDataset for single modality
114
  dataset = build_wds_dataset(
115
  path=path,
116
+ modality=modalities,
117
  split=split,
118
  urls=urls,
119
  batch_size=batch_size,
120
+ transform=transform,
121
  return_metadata=return_metadata,
122
  shuffle=shuffle,
123
+ shardshuffle=shardshuffle,
124
+ deterministic=deterministic,
125
+ seed=seed,
126
+ **kwargs
127
  )
128
  return dataset
129
 
130
  else:
131
+ if len(kwargs):
132
+ warnings.warn(f"keyword arguments ({kwargs}) are ignored for multiple modalities.")
133
+
134
  # Build custom multi-modal dataset
135
  dataset = build_multimodal_dataset(
136
  path=path,
 
138
  split=split,
139
  urls=urls,
140
  batch_size=batch_size,
141
+ transform=transform,
142
  return_metadata=return_metadata,
143
  shuffle=shuffle,
144
+ shardshuffle=shardshuffle,
145
+ deterministic=deterministic,
146
+ seed=seed,
147
  )
148
  return dataset
149
 
 
154
  return zarr.open_consolidated(mapper, mode="r")["bands"][...]
155
 
156
 
157
+ # Default decoder
158
+ default_decoder = wds.decode()
159
+
160
+
161
  def zarr_metadata_decoder(sample):
162
  for key, value in list(sample.items()):
163
  if key == "zarr.zip" or key.endswith(".zarr.zip"):
 
174
  if data["time"][...] > 1e6: # DEM has no valid timestamp (value = 0)
175
  time_key = "time" if key == "zarr.zip" else "time_" + key
176
  sample[time_key] = data["time"][...] # Integer values of type "datetime64[ns]"
177
+ elif isinstance(value, str):
178
+ # Skip str data
179
+ pass
180
+ else:
181
+ # Fallback to webdataset autodecoder
182
+ sample[key] = next(wds.decode()([{key: value}]))[key]
183
 
184
  return sample
185
 
 
212
  transform: Callable = None,
213
  shuffle: bool = True,
214
  return_metadata: bool = False,
215
+ shardshuffle: int = 100,
216
+ deterministic: bool = False,
217
+ seed: int = None,
218
+ empty_check: bool = False,
219
  *args, **kwargs
220
  ):
221
  if urls is None:
 
232
  [os.path.join(path, split, modality, f) for f in files]
233
  )
234
 
235
+ if modality == "S1GRD" and split == "val" and empty_check:
236
+ # Setting empty_check to True to avoid errors because of a single shard file in SSL4EOS12 S1GRD val split
237
+ empty_check = False
238
 
239
  # Build dataset
240
+ dataset = wds.WebDataset(
241
+ urls,
242
+ *args,
243
+ shardshuffle=shardshuffle * shuffle, # Shuffle shard
244
+ detshuffle=deterministic,
245
+ seed=seed,
246
+ handler=warn_and_continue,
247
+ nodesplitter=wds.split_by_node,
248
+ workersplitter=wds.split_by_worker,
249
+ empty_check=empty_check,
250
+ **kwargs
251
+ )
252
 
253
  # Decode from bytes to numpy arrays, etc.
254
  dataset = dataset.map(zarr_metadata_decoder) if return_metadata else dataset.decode(zarr_decoder)
 
278
  transform: Callable = None,
279
  shuffle: bool = True,
280
  return_metadata: bool = False,
281
+ shardshuffle: int = 100,
282
+ deterministic: bool = False,
283
+ seed: int = None,
284
+ empty_check: bool = False,
285
  ):
286
  if modalities is None:
287
  modalities = ["S2L2A", "S2L1C", "S2RGB", "S1GRD", "S1RTC", "DEM", "NDVI", "LULC"] # Default
 
301
  urls = (os.path.join(path, split, majortom_mod, split_files["majortom"][split][0])
302
  + "::" + os.path.join(path, split, ssl4eos12_mod, split_files["ssl4eos12"][split][0]))
303
 
304
+ dataset = wds.DataPipeline(
 
 
 
 
 
 
 
 
 
305
  # Infinitely sample shards from the shard list with replacement. Each worker is seeded independently.
306
  (
307
+ wds.ResampledShards(urls, deterministic=deterministic, seed=seed, empty_check=empty_check)
308
  if shuffle else wds.SimpleShardList(urls)
309
  ),
310
+ wds.split_by_node,
311
+ wds.split_by_worker,
312
  multi_tarfile_samples, # Extract individual samples from multi-modal tar files
313
  wds.shuffle(shardshuffle, seed=seed), # Shuffle with a buffer of given size
314
  (
 
329
  else wds.map(identity)
330
  ),
331
  )
332
+ return dataset
333
 
334
 
335
  def extract_modality_names(s):
 
366
 
367
  def multi_tarfile_samples(
368
  src_iter: Iterable[dict],
 
369
  ):
370
  """
371
  This function is adapted from https://github.com/apple/ml-4m/blob/main/fourm/data/unified_datasets.py.
 
386
  e.g. {"url": "shard_root_train_[rgb,caption]/00000.tar"}, {"url": "shard_root_train_[rgb,caption]/00001.tar"}, ...
387
  This function will also work when no square braces for multiple modalities are used, e.g. {"url": "shard_root_train/00000.tar"}, ...
388
  It can be a drop-in replacement for wds.tarfile_samples.
 
389
 
390
  Yields:
391
  Dictionary of aligned samples from all modalities.
 
431
  yield merged_dict
432
 
433
  except Exception as e:
434
+ warnings.warn(f"Exception occurred while processing {src['url']}: {repr(e)}."
435
+ f"Skipping shard")
436
+ continue
 
 
 
 
437
 
438
 
439
  class Transpose(albumentations.ImageOnlyTransform):
 
462
 
463
  def default_non_image_transform(array):
464
  if hasattr(array, "dtype") and (array.dtype == float or array.dtype == int):
465
+ return torch.from_numpy(array.copy())
466
  else:
467
  return array
468