Datasets:
Tasks:
Question Answering
Sub-tasks:
extractive-qa
Languages:
English
Size:
1K<n<10K
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """QED: A Dataset for Explanations in Question Answering""" | |
| import json | |
| import datasets | |
| _CITATION = """\ | |
| @misc{lamm2020qed, | |
| title={QED: A Framework and Dataset for Explanations in Question Answering}, | |
| author={Matthew Lamm and Jennimaria Palomaki and Chris Alberti and Daniel Andor and Eunsol Choi and Livio Baldini Soares and Michael Collins}, | |
| year={2020}, | |
| eprint={2009.06354}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.CL} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| QED, is a linguistically informed, extensible framework for explanations in question answering. \ | |
| A QED explanation specifies the relationship between a question and answer according to formal semantic notions \ | |
| such as referential equality, sentencehood, and entailment. It is an expertannotated dataset of QED explanations \ | |
| built upon a subset of the Google Natural Questions dataset. | |
| """ | |
| _HOMEPAGE = "https://github.com/google-research-datasets/QED" | |
| _BASE_URL = "https://raw.githubusercontent.com/google-research-datasets/QED/master/" | |
| _URLS = { | |
| "train": _BASE_URL + "qed-train.jsonlines", | |
| "dev": _BASE_URL + "qed-dev.jsonlines", | |
| } | |
| class Qed(datasets.GeneratorBasedBuilder): | |
| """QED: A Dataset for Explanations in Question Answering""" | |
| VERSION = datasets.Version("1.0.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig(name="qed", version=datasets.Version("1.0.0")), | |
| ] | |
| def _info(self): | |
| span_features = { | |
| "start": datasets.Value("int32"), | |
| "end": datasets.Value("int32"), | |
| "string": datasets.Value("string"), | |
| } | |
| reference_features = { | |
| "start": datasets.Value("int32"), | |
| "end": datasets.Value("int32"), | |
| "bridge": datasets.Value("string"), | |
| "string": datasets.Value("string"), | |
| } | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "example_id": datasets.Value("int64"), | |
| "title_text": datasets.Value("string"), | |
| "url": datasets.Value("string"), | |
| "question": datasets.Value("string"), | |
| "paragraph_text": datasets.Value("string"), | |
| "sentence_starts": datasets.Sequence(datasets.Value("int32")), | |
| "original_nq_answers": [span_features], | |
| "annotation": { | |
| "referential_equalities": [ | |
| { | |
| "question_reference": span_features, | |
| "sentence_reference": reference_features, | |
| } | |
| ], | |
| "answer": [ | |
| { | |
| "sentence_reference": reference_features, | |
| "paragraph_reference": span_features, | |
| } | |
| ], | |
| "explanation_type": datasets.Value("string"), | |
| "selected_sentence": span_features, | |
| }, | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| downloaded_paths = dl_manager.download(_URLS) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"filepath": downloaded_paths["train"]}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"filepath": downloaded_paths["dev"]}, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| with open(filepath, encoding="utf-8") as f: | |
| examples = f.readlines() | |
| for example in examples: | |
| example = json.loads(example.strip()) | |
| example["question"] = example.pop("question_text") | |
| # some examples have missing annotation, assign empty values to such examples | |
| if "answer" not in example["annotation"]: | |
| example["annotation"]["answer"] = [] | |
| if "selected_sentence" not in example["annotation"]: | |
| example["annotation"]["selected_sentence"] = { | |
| "start": -1, | |
| "end": -1, | |
| "string": "", | |
| } | |
| if "referential_equalities" not in example["annotation"]: | |
| example["annotation"]["referential_equalities"] = [] | |
| else: | |
| for referential_equalities in example["annotation"]["referential_equalities"]: | |
| bridge = referential_equalities["sentence_reference"]["bridge"] | |
| referential_equalities["sentence_reference"]["bridge"] = ( | |
| bridge if bridge is not False else None | |
| ) | |
| # remove the nested list | |
| example["original_nq_answers"] = example["original_nq_answers"][0] | |
| yield example["example_id"], example | |