| import torch | |
| import torch.distributed as dist | |
| def init_process(): | |
| dist.init_process_group(backend="nccl") | |
| torch.cuda.set_device(dist.get_rank()) | |
| def example_broadcast(): | |
| if dist.get_rank() == 0: | |
| tensor = torch.tensor([1, 2, 3, 4], dtype=torch.float32).cuda() | |
| else: | |
| tensor = torch.zeros(4, dtype=torch.float32).cuda() | |
| print(f"Before broadcast on rank {dist.get_rank()}: {tensor}") | |
| dist.broadcast(tensor, src=0) | |
| print(f"After broadcast on rank {dist.get_rank()}: {tensor}") | |
| init_process() | |
| example_broadcast() | |
| dist.destroy_process_group() |