|
|
import os |
|
|
|
|
|
os.environ['SPCONV_ALGO'] = 'native' |
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
import imageio |
|
|
from PIL import Image |
|
|
from trellis.pipelines import TrellisImageTo3DPipeline |
|
|
from trellis.utils import render_utils |
|
|
|
|
|
|
|
|
pipeline = TrellisImageTo3DPipeline.from_pretrained("microsoft/TRELLIS-image-large") |
|
|
pipeline.cuda() |
|
|
|
|
|
|
|
|
images = [ |
|
|
Image.open("assets/example_multi_image/character_1.png"), |
|
|
Image.open("assets/example_multi_image/character_2.png"), |
|
|
Image.open("assets/example_multi_image/character_3.png"), |
|
|
] |
|
|
|
|
|
|
|
|
outputs = pipeline.run_multi_image( |
|
|
images, |
|
|
seed=1, |
|
|
|
|
|
sparse_structure_sampler_params={ |
|
|
"steps": 12, |
|
|
"cfg_strength": 7.5, |
|
|
}, |
|
|
slat_sampler_params={ |
|
|
"steps": 12, |
|
|
"cfg_strength": 3, |
|
|
}, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
video_gs = render_utils.render_video(outputs['gaussian'][0])['color'] |
|
|
video_mesh = render_utils.render_video(outputs['mesh'][0])['normal'] |
|
|
video = [np.concatenate([frame_gs, frame_mesh], axis=1) for frame_gs, frame_mesh in zip(video_gs, video_mesh)] |
|
|
imageio.mimsave("sample_multi.mp4", video, fps=30) |
|
|
|