anna-sarvam commited on
Commit
4fa276f
·
verified ·
1 Parent(s): fed49bb

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +248 -104
README.md CHANGED
@@ -1,104 +1,248 @@
1
- ---
2
- dataset_info:
3
- - config_name: collaboration_patterns
4
- features:
5
- - name: pattern_name
6
- dtype: string
7
- - name: collaboration_count
8
- dtype: float64
9
- - name: collaboration_pct
10
- dtype: float64
11
- splits:
12
- - name: train
13
- num_bytes: 154
14
- num_examples: 5
15
- download_size: 2002
16
- dataset_size: 154
17
- - config_name: india
18
- features:
19
- - name: data_type
20
- dtype: string
21
- - name: metric_name
22
- dtype: string
23
- - name: value
24
- dtype: float64
25
- - name: item_name
26
- dtype: string
27
- splits:
28
- - name: train
29
- num_bytes: 7685
30
- num_examples: 62
31
- download_size: 6660
32
- dataset_size: 7685
33
- - config_name: occupations
34
- features:
35
- - name: soc_group
36
- dtype: string
37
- - name: percentage
38
- dtype: float64
39
- - name: facet
40
- dtype: string
41
- splits:
42
- - name: train
43
- num_bytes: 1272
44
- num_examples: 22
45
- download_size: 2600
46
- dataset_size: 1272
47
- - config_name: task_collaboration_intersections
48
- features:
49
- - name: task_name
50
- dtype: string
51
- - name: collaboration_pattern
52
- dtype: string
53
- - name: onet_task_collaboration_count
54
- dtype: float64
55
- - name: onet_task_collaboration_pct
56
- dtype: float64
57
- splits:
58
- - name: train
59
- num_bytes: 643865
60
- num_examples: 4528
61
- download_size: 150663
62
- dataset_size: 643865
63
- - config_name: tasks
64
- features:
65
- - name: task_name
66
- dtype: string
67
- - name: onet_task_count
68
- dtype: float64
69
- - name: onet_task_pct
70
- dtype: float64
71
- - name: has_automation_data
72
- dtype: bool
73
- - name: has_augmentation_data
74
- dtype: bool
75
- - name: has_usage_data
76
- dtype: bool
77
- splits:
78
- - name: train
79
- num_bytes: 330701
80
- num_examples: 2616
81
- download_size: 169539
82
- dataset_size: 330701
83
- configs:
84
- - config_name: collaboration_patterns
85
- data_files:
86
- - split: train
87
- path: collaboration_patterns/train-*
88
- - config_name: india
89
- data_files:
90
- - split: train
91
- path: india/train-*
92
- - config_name: occupations
93
- data_files:
94
- - split: train
95
- path: occupations/train-*
96
- - config_name: task_collaboration_intersections
97
- data_files:
98
- - split: train
99
- path: task_collaboration_intersections/train-*
100
- - config_name: tasks
101
- data_files:
102
- - split: train
103
- path: tasks/train-*
104
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Economic Index - Structured & Cleaned Dataset
2
+
3
+ This dataset is a cleaned, structured version of the [Anthropic Economic Index](https://huggingface.co/datasets/Anthropic/EconomicIndex), organized for easy integration with persona-based scenario generation pipelines.
4
+
5
+ ## Dataset Description
6
+
7
+ The Anthropic Economic Index tracks how people use Claude AI for work-related tasks. This structured version extracts and organizes the key information into easy-to-use tables.
8
+
9
+ **Original Data Period**: August 4-11, 2025
10
+ **Source**: Anthropic Economic Index Release 2025-09-15
11
+ **Processing**: Extracted from enriched_claude_ai.csv with comprehensive structuring
12
+
13
+ ## Dataset Structure
14
+
15
+ This dataset contains 5 splits:
16
+
17
+ ### 1. `tasks` (2,616 rows)
18
+ All unique tasks people do with Claude AI, with usage metrics.
19
+
20
+ **Columns:**
21
+ - `task_name` (string): Description of the task
22
+ - `onet_task_count` (float): Number of conversations using this task
23
+ - `onet_task_pct` (float): Percentage of total usage
24
+ - `onet_task_pct_index` (float): Specialization index
25
+ - `automation_pct` (float): Automation percentage (where available)
26
+ - `augmentation_pct` (float): Augmentation percentage (where available)
27
+ - `has_automation_data` (bool): Whether automation data exists
28
+ - `has_augmentation_data` (bool): Whether augmentation data exists
29
+ - `has_usage_data` (bool): Whether usage data exists
30
+
31
+ **Example:**
32
+ ```python
33
+ from datasets import load_dataset
34
+ ds = load_dataset("anna-sarvam/economic-index-structured")
35
+ print(ds['tasks'][0])
36
+ # {'task_name': 'write new programs or modify existing programs...',
37
+ # 'onet_task_count': 6618.0, 'onet_task_pct': 0.52, ...}
38
+ ```
39
+
40
+ ### 2. `collaboration_patterns` (5 rows)
41
+ How users interact with Claude AI.
42
+
43
+ **Patterns:**
44
+ 1. **directive** (38.8%) - Direct instructions
45
+ 2. **task iteration** (22.2%) - Step-by-step refinement
46
+ 3. **learning** (20.3%) - Educational assistance
47
+ 4. **feedback loop** (10.3%) - Iterative improvement
48
+ 5. **validation** (4.5%) - Verification
49
+
50
+ **Columns:**
51
+ - `pattern_name` (string): Name of collaboration pattern
52
+ - `collaboration_count` (float): Number of uses
53
+ - `collaboration_pct` (float): Percentage of total
54
+
55
+ ### 3. `task_collaboration_intersections` (4,528 rows)
56
+ Which collaboration patterns are used for which tasks.
57
+
58
+ **Columns:**
59
+ - `task_name` (string): Task description
60
+ - `collaboration_pattern` (string): Pattern used
61
+ - `onet_task_collaboration_count` (float): Count for this combination
62
+ - `onet_task_collaboration_pct` (float): Percentage within task
63
+
64
+ ### 4. `occupations` (22 rows)
65
+ SOC (Standard Occupational Classification) occupation groups.
66
+
67
+ **Top Occupations:**
68
+ 1. Computer and Mathematical (35.9%)
69
+ 2. Educational Instruction and Library (12.3%)
70
+ 3. Arts, Design, Entertainment, Sports, and Media (8.2%)
71
+
72
+ **Columns:**
73
+ - `soc_group` (string): Occupation group name
74
+ - `percentage` (float): Percentage of classified tasks
75
+ - `facet` (string): Data facet
76
+
77
+ ### 5. `india` (65 rows)
78
+ India-specific usage patterns and top tasks.
79
+
80
+ **Columns:**
81
+ - `data_type` (string): Type of data (overall_metric, top_task, collaboration_pattern)
82
+ - `metric_name` (string): Name of metric
83
+ - `value` (float): Metric value
84
+ - `item_name` (string): Task or pattern name (if applicable)
85
+
86
+ ## Key Statistics
87
+
88
+ - **Total Tasks**: 2,616 unique tasks
89
+ - **Collaboration Patterns**: 5 main types
90
+ - **Occupation Groups**: 22 SOC categories
91
+ - **Task-Pattern Combinations**: 4,528
92
+ - **Geographic Coverage**: 201 countries (including India)
93
+
94
+ ## Usage Examples
95
+
96
+ ### Load the entire dataset
97
+ ```python
98
+ from datasets import load_dataset
99
+
100
+ ds = load_dataset("anna-sarvam/economic-index-structured")
101
+ ```
102
+
103
+ ### Get top 10 tasks
104
+ ```python
105
+ tasks = ds['tasks'].to_pandas()
106
+ top_10 = tasks.nlargest(10, 'onet_task_count')
107
+ print(top_10[['task_name', 'onet_task_count']])
108
+ ```
109
+
110
+ ### Find education-related tasks
111
+ ```python
112
+ tasks = ds['tasks'].to_pandas()
113
+ education_tasks = tasks[tasks['task_name'].str.contains('education', case=False)]
114
+ ```
115
+
116
+ ### Get India-specific top tasks
117
+ ```python
118
+ india = ds['india'].to_pandas()
119
+ india_top_tasks = india[india['data_type'] == 'top_task']
120
+ top_5_india = india_top_tasks.nlargest(5, 'value')
121
+ ```
122
+
123
+ ### Find tasks for software developers
124
+ ```python
125
+ tasks = ds['tasks'].to_pandas()
126
+ software_tasks = tasks[tasks['task_name'].str.contains('software|program|code', case=False)]
127
+ ```
128
+
129
+ ### Analyze collaboration patterns
130
+ ```python
131
+ patterns = ds['collaboration_patterns'].to_pandas()
132
+ print(patterns[['pattern_name', 'collaboration_pct']].sort_values('collaboration_pct', ascending=False))
133
+ ```
134
+
135
+ ## India-Specific Insights
136
+
137
+ ### Usage Statistics
138
+ - **Total Conversations**: 1,831
139
+ - **Global Percentage**: 0.88%
140
+ - **Automation**: 45.5%
141
+ - **Augmentation**: 54.5%
142
+
143
+ ### Top 5 Tasks in India
144
+ 1. Write/modify programs (6,618 uses)
145
+ 2. Fix software errors (5,118 uses)
146
+ 3. Adapt software to new hardware (3,594 uses)
147
+ 4. Debug and correct errors (2,663 uses)
148
+ 5. Build/maintain websites (2,661 uses)
149
+
150
+ ### Top 3 Collaboration Patterns in India
151
+ 1. **directive** (44.7%) - Higher than global average
152
+ 2. **task iteration** (23.4%)
153
+ 3. **learning** (14.5%)
154
+
155
+ ## Use Cases
156
+
157
+ ### 1. Persona-Scenario Matching
158
+ Match tasks from this dataset to expanded personas based on occupation:
159
+ ```python
160
+ # Load tasks
161
+ tasks = ds['tasks'].to_pandas()
162
+
163
+ # Filter for teachers
164
+ education_tasks = tasks[tasks['task_name'].str.contains('educat|teach|tutor', case=False)]
165
+
166
+ # Match to teacher personas
167
+ ```
168
+
169
+ ### 2. Realistic Collaboration Patterns
170
+ Use actual collaboration patterns in scenario generation:
171
+ ```python
172
+ patterns = ds['collaboration_patterns'].to_pandas()
173
+
174
+ # Sample by actual distribution
175
+ sampled_pattern = patterns.sample(1, weights='collaboration_pct')
176
+ ```
177
+
178
+ ### 3. India-Specific Scenarios
179
+ Generate scenarios using India's actual usage patterns:
180
+ ```python
181
+ india = ds['india'].to_pandas()
182
+ india_tasks = india[india['data_type'] == 'top_task'].nlargest(20, 'value')
183
+ ```
184
+
185
+ ## Data Processing
186
+
187
+ This dataset was created from the [Anthropic Economic Index](https://huggingface.co/datasets/Anthropic/EconomicIndex) through:
188
+
189
+ 1. **Download**: Extracted enriched_claude_ai.csv (137K rows)
190
+ 2. **Filtering**: Selected global-level data (geo_id='GLOBAL')
191
+ 3. **Structuring**: Organized by facets (tasks, collaboration, occupations)
192
+ 4. **Flattening**: Converted nested metrics to flat tables
193
+ 5. **India Extraction**: Isolated India-specific patterns (3,874 rows)
194
+
195
+ ## Automation vs Augmentation
196
+
197
+ **Global Averages:**
198
+ - Automation: 51.1% (AI does the task)
199
+ - Augmentation: 48.9% (AI assists human)
200
+
201
+ **India:**
202
+ - Automation: 45.5%
203
+ - Augmentation: 54.5%
204
+
205
+ India shows more augmentation-focused usage compared to global patterns.
206
+
207
+ ## Limitations
208
+
209
+ - Data from only one week (Aug 4-11, 2025)
210
+ - Filtered for privacy (>200 conversations per country)
211
+ - "not_classified" and "none" categories removed for clarity
212
+ - Some tasks may not have automation/augmentation data
213
+
214
+ ## Citation
215
+
216
+ If you use this dataset, please cite both the structured version and the original:
217
+
218
+ ```
219
+ @dataset{economic_index_structured,
220
+ title={Economic Index - Structured & Cleaned Dataset},
221
+ author={Your Name},
222
+ year={2025},
223
+ publisher={Hugging Face},
224
+ url={https://huggingface.co/datasets/anna-sarvam/economic-index-structured}
225
+ }
226
+
227
+ @dataset{anthropic_economic_index,
228
+ title={Anthropic Economic Index},
229
+ author={Anthropic},
230
+ year={2025},
231
+ publisher={Hugging Face},
232
+ url={https://huggingface.co/datasets/Anthropic/EconomicIndex}
233
+ }
234
+ ```
235
+
236
+ ## Related Resources
237
+
238
+ - [Original Economic Index](https://huggingface.co/datasets/Anthropic/EconomicIndex)
239
+ - [Economic Index Paper](https://arxiv.org/abs/2503.04761)
240
+ - [O*NET Database](https://www.onetcenter.org/)
241
+
242
+ ## License
243
+
244
+ Same as the original Anthropic Economic Index dataset (MIT License).
245
+
246
+ ## Maintenance
247
+
248
+ This is a snapshot of the Economic Index as of September 2025. For the most up-to-date data, refer to the [original dataset](https://huggingface.co/datasets/Anthropic/EconomicIndex).