Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,104 +1,248 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Economic Index - Structured & Cleaned Dataset
|
| 2 |
+
|
| 3 |
+
This dataset is a cleaned, structured version of the [Anthropic Economic Index](https://huggingface.co/datasets/Anthropic/EconomicIndex), organized for easy integration with persona-based scenario generation pipelines.
|
| 4 |
+
|
| 5 |
+
## Dataset Description
|
| 6 |
+
|
| 7 |
+
The Anthropic Economic Index tracks how people use Claude AI for work-related tasks. This structured version extracts and organizes the key information into easy-to-use tables.
|
| 8 |
+
|
| 9 |
+
**Original Data Period**: August 4-11, 2025
|
| 10 |
+
**Source**: Anthropic Economic Index Release 2025-09-15
|
| 11 |
+
**Processing**: Extracted from enriched_claude_ai.csv with comprehensive structuring
|
| 12 |
+
|
| 13 |
+
## Dataset Structure
|
| 14 |
+
|
| 15 |
+
This dataset contains 5 splits:
|
| 16 |
+
|
| 17 |
+
### 1. `tasks` (2,616 rows)
|
| 18 |
+
All unique tasks people do with Claude AI, with usage metrics.
|
| 19 |
+
|
| 20 |
+
**Columns:**
|
| 21 |
+
- `task_name` (string): Description of the task
|
| 22 |
+
- `onet_task_count` (float): Number of conversations using this task
|
| 23 |
+
- `onet_task_pct` (float): Percentage of total usage
|
| 24 |
+
- `onet_task_pct_index` (float): Specialization index
|
| 25 |
+
- `automation_pct` (float): Automation percentage (where available)
|
| 26 |
+
- `augmentation_pct` (float): Augmentation percentage (where available)
|
| 27 |
+
- `has_automation_data` (bool): Whether automation data exists
|
| 28 |
+
- `has_augmentation_data` (bool): Whether augmentation data exists
|
| 29 |
+
- `has_usage_data` (bool): Whether usage data exists
|
| 30 |
+
|
| 31 |
+
**Example:**
|
| 32 |
+
```python
|
| 33 |
+
from datasets import load_dataset
|
| 34 |
+
ds = load_dataset("anna-sarvam/economic-index-structured")
|
| 35 |
+
print(ds['tasks'][0])
|
| 36 |
+
# {'task_name': 'write new programs or modify existing programs...',
|
| 37 |
+
# 'onet_task_count': 6618.0, 'onet_task_pct': 0.52, ...}
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
### 2. `collaboration_patterns` (5 rows)
|
| 41 |
+
How users interact with Claude AI.
|
| 42 |
+
|
| 43 |
+
**Patterns:**
|
| 44 |
+
1. **directive** (38.8%) - Direct instructions
|
| 45 |
+
2. **task iteration** (22.2%) - Step-by-step refinement
|
| 46 |
+
3. **learning** (20.3%) - Educational assistance
|
| 47 |
+
4. **feedback loop** (10.3%) - Iterative improvement
|
| 48 |
+
5. **validation** (4.5%) - Verification
|
| 49 |
+
|
| 50 |
+
**Columns:**
|
| 51 |
+
- `pattern_name` (string): Name of collaboration pattern
|
| 52 |
+
- `collaboration_count` (float): Number of uses
|
| 53 |
+
- `collaboration_pct` (float): Percentage of total
|
| 54 |
+
|
| 55 |
+
### 3. `task_collaboration_intersections` (4,528 rows)
|
| 56 |
+
Which collaboration patterns are used for which tasks.
|
| 57 |
+
|
| 58 |
+
**Columns:**
|
| 59 |
+
- `task_name` (string): Task description
|
| 60 |
+
- `collaboration_pattern` (string): Pattern used
|
| 61 |
+
- `onet_task_collaboration_count` (float): Count for this combination
|
| 62 |
+
- `onet_task_collaboration_pct` (float): Percentage within task
|
| 63 |
+
|
| 64 |
+
### 4. `occupations` (22 rows)
|
| 65 |
+
SOC (Standard Occupational Classification) occupation groups.
|
| 66 |
+
|
| 67 |
+
**Top Occupations:**
|
| 68 |
+
1. Computer and Mathematical (35.9%)
|
| 69 |
+
2. Educational Instruction and Library (12.3%)
|
| 70 |
+
3. Arts, Design, Entertainment, Sports, and Media (8.2%)
|
| 71 |
+
|
| 72 |
+
**Columns:**
|
| 73 |
+
- `soc_group` (string): Occupation group name
|
| 74 |
+
- `percentage` (float): Percentage of classified tasks
|
| 75 |
+
- `facet` (string): Data facet
|
| 76 |
+
|
| 77 |
+
### 5. `india` (65 rows)
|
| 78 |
+
India-specific usage patterns and top tasks.
|
| 79 |
+
|
| 80 |
+
**Columns:**
|
| 81 |
+
- `data_type` (string): Type of data (overall_metric, top_task, collaboration_pattern)
|
| 82 |
+
- `metric_name` (string): Name of metric
|
| 83 |
+
- `value` (float): Metric value
|
| 84 |
+
- `item_name` (string): Task or pattern name (if applicable)
|
| 85 |
+
|
| 86 |
+
## Key Statistics
|
| 87 |
+
|
| 88 |
+
- **Total Tasks**: 2,616 unique tasks
|
| 89 |
+
- **Collaboration Patterns**: 5 main types
|
| 90 |
+
- **Occupation Groups**: 22 SOC categories
|
| 91 |
+
- **Task-Pattern Combinations**: 4,528
|
| 92 |
+
- **Geographic Coverage**: 201 countries (including India)
|
| 93 |
+
|
| 94 |
+
## Usage Examples
|
| 95 |
+
|
| 96 |
+
### Load the entire dataset
|
| 97 |
+
```python
|
| 98 |
+
from datasets import load_dataset
|
| 99 |
+
|
| 100 |
+
ds = load_dataset("anna-sarvam/economic-index-structured")
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
### Get top 10 tasks
|
| 104 |
+
```python
|
| 105 |
+
tasks = ds['tasks'].to_pandas()
|
| 106 |
+
top_10 = tasks.nlargest(10, 'onet_task_count')
|
| 107 |
+
print(top_10[['task_name', 'onet_task_count']])
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
### Find education-related tasks
|
| 111 |
+
```python
|
| 112 |
+
tasks = ds['tasks'].to_pandas()
|
| 113 |
+
education_tasks = tasks[tasks['task_name'].str.contains('education', case=False)]
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
### Get India-specific top tasks
|
| 117 |
+
```python
|
| 118 |
+
india = ds['india'].to_pandas()
|
| 119 |
+
india_top_tasks = india[india['data_type'] == 'top_task']
|
| 120 |
+
top_5_india = india_top_tasks.nlargest(5, 'value')
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
### Find tasks for software developers
|
| 124 |
+
```python
|
| 125 |
+
tasks = ds['tasks'].to_pandas()
|
| 126 |
+
software_tasks = tasks[tasks['task_name'].str.contains('software|program|code', case=False)]
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
### Analyze collaboration patterns
|
| 130 |
+
```python
|
| 131 |
+
patterns = ds['collaboration_patterns'].to_pandas()
|
| 132 |
+
print(patterns[['pattern_name', 'collaboration_pct']].sort_values('collaboration_pct', ascending=False))
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
## India-Specific Insights
|
| 136 |
+
|
| 137 |
+
### Usage Statistics
|
| 138 |
+
- **Total Conversations**: 1,831
|
| 139 |
+
- **Global Percentage**: 0.88%
|
| 140 |
+
- **Automation**: 45.5%
|
| 141 |
+
- **Augmentation**: 54.5%
|
| 142 |
+
|
| 143 |
+
### Top 5 Tasks in India
|
| 144 |
+
1. Write/modify programs (6,618 uses)
|
| 145 |
+
2. Fix software errors (5,118 uses)
|
| 146 |
+
3. Adapt software to new hardware (3,594 uses)
|
| 147 |
+
4. Debug and correct errors (2,663 uses)
|
| 148 |
+
5. Build/maintain websites (2,661 uses)
|
| 149 |
+
|
| 150 |
+
### Top 3 Collaboration Patterns in India
|
| 151 |
+
1. **directive** (44.7%) - Higher than global average
|
| 152 |
+
2. **task iteration** (23.4%)
|
| 153 |
+
3. **learning** (14.5%)
|
| 154 |
+
|
| 155 |
+
## Use Cases
|
| 156 |
+
|
| 157 |
+
### 1. Persona-Scenario Matching
|
| 158 |
+
Match tasks from this dataset to expanded personas based on occupation:
|
| 159 |
+
```python
|
| 160 |
+
# Load tasks
|
| 161 |
+
tasks = ds['tasks'].to_pandas()
|
| 162 |
+
|
| 163 |
+
# Filter for teachers
|
| 164 |
+
education_tasks = tasks[tasks['task_name'].str.contains('educat|teach|tutor', case=False)]
|
| 165 |
+
|
| 166 |
+
# Match to teacher personas
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
### 2. Realistic Collaboration Patterns
|
| 170 |
+
Use actual collaboration patterns in scenario generation:
|
| 171 |
+
```python
|
| 172 |
+
patterns = ds['collaboration_patterns'].to_pandas()
|
| 173 |
+
|
| 174 |
+
# Sample by actual distribution
|
| 175 |
+
sampled_pattern = patterns.sample(1, weights='collaboration_pct')
|
| 176 |
+
```
|
| 177 |
+
|
| 178 |
+
### 3. India-Specific Scenarios
|
| 179 |
+
Generate scenarios using India's actual usage patterns:
|
| 180 |
+
```python
|
| 181 |
+
india = ds['india'].to_pandas()
|
| 182 |
+
india_tasks = india[india['data_type'] == 'top_task'].nlargest(20, 'value')
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
## Data Processing
|
| 186 |
+
|
| 187 |
+
This dataset was created from the [Anthropic Economic Index](https://huggingface.co/datasets/Anthropic/EconomicIndex) through:
|
| 188 |
+
|
| 189 |
+
1. **Download**: Extracted enriched_claude_ai.csv (137K rows)
|
| 190 |
+
2. **Filtering**: Selected global-level data (geo_id='GLOBAL')
|
| 191 |
+
3. **Structuring**: Organized by facets (tasks, collaboration, occupations)
|
| 192 |
+
4. **Flattening**: Converted nested metrics to flat tables
|
| 193 |
+
5. **India Extraction**: Isolated India-specific patterns (3,874 rows)
|
| 194 |
+
|
| 195 |
+
## Automation vs Augmentation
|
| 196 |
+
|
| 197 |
+
**Global Averages:**
|
| 198 |
+
- Automation: 51.1% (AI does the task)
|
| 199 |
+
- Augmentation: 48.9% (AI assists human)
|
| 200 |
+
|
| 201 |
+
**India:**
|
| 202 |
+
- Automation: 45.5%
|
| 203 |
+
- Augmentation: 54.5%
|
| 204 |
+
|
| 205 |
+
India shows more augmentation-focused usage compared to global patterns.
|
| 206 |
+
|
| 207 |
+
## Limitations
|
| 208 |
+
|
| 209 |
+
- Data from only one week (Aug 4-11, 2025)
|
| 210 |
+
- Filtered for privacy (>200 conversations per country)
|
| 211 |
+
- "not_classified" and "none" categories removed for clarity
|
| 212 |
+
- Some tasks may not have automation/augmentation data
|
| 213 |
+
|
| 214 |
+
## Citation
|
| 215 |
+
|
| 216 |
+
If you use this dataset, please cite both the structured version and the original:
|
| 217 |
+
|
| 218 |
+
```
|
| 219 |
+
@dataset{economic_index_structured,
|
| 220 |
+
title={Economic Index - Structured & Cleaned Dataset},
|
| 221 |
+
author={Your Name},
|
| 222 |
+
year={2025},
|
| 223 |
+
publisher={Hugging Face},
|
| 224 |
+
url={https://huggingface.co/datasets/anna-sarvam/economic-index-structured}
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
+
@dataset{anthropic_economic_index,
|
| 228 |
+
title={Anthropic Economic Index},
|
| 229 |
+
author={Anthropic},
|
| 230 |
+
year={2025},
|
| 231 |
+
publisher={Hugging Face},
|
| 232 |
+
url={https://huggingface.co/datasets/Anthropic/EconomicIndex}
|
| 233 |
+
}
|
| 234 |
+
```
|
| 235 |
+
|
| 236 |
+
## Related Resources
|
| 237 |
+
|
| 238 |
+
- [Original Economic Index](https://huggingface.co/datasets/Anthropic/EconomicIndex)
|
| 239 |
+
- [Economic Index Paper](https://arxiv.org/abs/2503.04761)
|
| 240 |
+
- [O*NET Database](https://www.onetcenter.org/)
|
| 241 |
+
|
| 242 |
+
## License
|
| 243 |
+
|
| 244 |
+
Same as the original Anthropic Economic Index dataset (MIT License).
|
| 245 |
+
|
| 246 |
+
## Maintenance
|
| 247 |
+
|
| 248 |
+
This is a snapshot of the Economic Index as of September 2025. For the most up-to-date data, refer to the [original dataset](https://huggingface.co/datasets/Anthropic/EconomicIndex).
|