sanskrit-ocr-post-correction / sanskrit-ocr-post-correction.py
acomquest's picture
Upload sanskrit-ocr-post-correction.py with huggingface_hub
8ed6e6a verified
raw
history blame
3.72 kB
"""Sanskrit OCR Post-Correction Dataset"""
import csv
import os
import datasets
_CITATION = """\
@inproceedings{maheshwari2022benchmark,
title={A Benchmark and Dataset for Post-OCR text correction in Sanskrit},
author={Maheshwari, Ayush and Singh, Nikhil and Krishna, Amrith and Ramakrishnan, Ganesh},
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2022},
pages={6258--6265},
year={2022}
}
"""
_DESCRIPTION = """\
A Benchmark and Dataset for Post-OCR text correction in Sanskrit.
This dataset contains manually post-edited OCR data for Sanskrit texts in Devanagari script.
It includes:
- Train/Validation/Test splits with OCR text and corrected ground truth
- An out-of-domain test set of 500 sentences
- Source texts from classical Sanskrit works including Brahmasutra Bhashyam, Grahalaghava, and Goladhyaya
"""
_HOMEPAGE = "https://github.com/ayushbits/pe-ocr-sanskrit"
_LICENSE = "MIT"
_URLS = {
"train": "train_devnagari.csv",
"validation": "val_devnagari.csv",
"test": "test_devnagari.csv",
"ood_test": "ood-test.csv",
}
class SanskritOCRPostCorrection(datasets.GeneratorBasedBuilder):
"""Sanskrit OCR Post-Correction Dataset"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="default",
version=VERSION,
description="Sanskrit OCR post-correction dataset with all splits",
),
]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
features = datasets.Features(
{
"input_text": datasets.Value("string"),
"target_text": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_files["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_files["validation"],
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_files["test"],
"split": "test",
},
),
datasets.SplitGenerator(
name="ood_test",
gen_kwargs={
"filepath": data_files["ood_test"],
"split": "ood_test",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
# Handle different delimiters (comma for main files, semicolon for ood-test)
delimiter = ";" if split == "ood_test" else ","
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter=delimiter)
for idx, row in enumerate(reader):
yield idx, {
"input_text": row["input_text"],
"target_text": row["target_text"],
}