update script
Browse files- README.md +3 -3
- openwebtext.py +36 -25
README.md
CHANGED
|
@@ -28,10 +28,10 @@ dataset_info:
|
|
| 28 |
config_name: plain_text
|
| 29 |
splits:
|
| 30 |
- name: train
|
| 31 |
-
num_bytes:
|
| 32 |
num_examples: 8013769
|
| 33 |
-
download_size:
|
| 34 |
-
dataset_size:
|
| 35 |
---
|
| 36 |
|
| 37 |
# Dataset Card for "openwebtext"
|
|
|
|
| 28 |
config_name: plain_text
|
| 29 |
splits:
|
| 30 |
- name: train
|
| 31 |
+
num_bytes: 39769491688
|
| 32 |
num_examples: 8013769
|
| 33 |
+
download_size: 12880189440
|
| 34 |
+
dataset_size: 39769491688
|
| 35 |
---
|
| 36 |
|
| 37 |
# Dataset Card for "openwebtext"
|
openwebtext.py
CHANGED
|
@@ -14,10 +14,9 @@
|
|
| 14 |
# limitations under the License.
|
| 15 |
"""The Open WebText Corpus"""
|
| 16 |
|
| 17 |
-
|
| 18 |
import os
|
| 19 |
import re
|
| 20 |
-
|
| 21 |
|
| 22 |
import datasets
|
| 23 |
|
|
@@ -35,7 +34,25 @@ _DESCRIPTION = """\
|
|
| 35 |
An open-source replication of the WebText dataset from OpenAI.
|
| 36 |
"""
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
class Openwebtext(datasets.GeneratorBasedBuilder):
|
|
@@ -58,29 +75,23 @@ class Openwebtext(datasets.GeneratorBasedBuilder):
|
|
| 58 |
)
|
| 59 |
|
| 60 |
def _split_generators(self, dl_manager):
|
| 61 |
-
|
| 62 |
-
owt_dir = os.path.join(dl_dir, "openwebtext")
|
| 63 |
-
subset_xzs = [
|
| 64 |
-
os.path.join(owt_dir, file_name)
|
| 65 |
-
for file_name in sorted(os.listdir(owt_dir))
|
| 66 |
-
if file_name.endswith("xz") # filter out ...xz.lock
|
| 67 |
-
]
|
| 68 |
-
ex_dirs = dl_manager.extract(subset_xzs, num_proc=round(os.cpu_count() * 0.75))
|
| 69 |
-
nested_txt_files = [
|
| 70 |
-
[
|
| 71 |
-
os.path.join(ex_dir, txt_file_name)
|
| 72 |
-
for txt_file_name in sorted(os.listdir(ex_dir))
|
| 73 |
-
if txt_file_name.endswith("txt")
|
| 74 |
-
]
|
| 75 |
-
for ex_dir in ex_dirs
|
| 76 |
-
]
|
| 77 |
-
txt_files = chain(*nested_txt_files)
|
| 78 |
return [
|
| 79 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
]
|
| 81 |
|
| 82 |
-
def _generate_examples(self,
|
| 83 |
"""Yields examples."""
|
| 84 |
-
for
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# limitations under the License.
|
| 15 |
"""The Open WebText Corpus"""
|
| 16 |
|
|
|
|
| 17 |
import os
|
| 18 |
import re
|
| 19 |
+
import tarfile
|
| 20 |
|
| 21 |
import datasets
|
| 22 |
|
|
|
|
| 34 |
An open-source replication of the WebText dataset from OpenAI.
|
| 35 |
"""
|
| 36 |
|
| 37 |
+
_N_DATA_FILES = 21
|
| 38 |
+
_DATA_FILES = ["subsets/urlsf_subset{:02d}.tar".format(i) for i in range(_N_DATA_FILES)]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def _iter_tar(f):
|
| 42 |
+
stream = tarfile.open(fileobj=f, mode="r|*")
|
| 43 |
+
for tarinfo in stream:
|
| 44 |
+
file_path = tarinfo.name
|
| 45 |
+
if not tarinfo.isreg():
|
| 46 |
+
continue
|
| 47 |
+
if file_path is None:
|
| 48 |
+
continue
|
| 49 |
+
if os.path.basename(file_path).startswith((".", "__")):
|
| 50 |
+
# skipping hidden files
|
| 51 |
+
continue
|
| 52 |
+
file_obj = stream.extractfile(tarinfo)
|
| 53 |
+
yield file_path, file_obj
|
| 54 |
+
stream.members = []
|
| 55 |
+
del stream
|
| 56 |
|
| 57 |
|
| 58 |
class Openwebtext(datasets.GeneratorBasedBuilder):
|
|
|
|
| 75 |
)
|
| 76 |
|
| 77 |
def _split_generators(self, dl_manager):
|
| 78 |
+
archives = dl_manager.download(_DATA_FILES)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
return [
|
| 80 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={
|
| 81 |
+
"archive_iterators": [
|
| 82 |
+
dl_manager.iter_archive(archive) for archive in archives
|
| 83 |
+
]
|
| 84 |
+
}),
|
| 85 |
]
|
| 86 |
|
| 87 |
+
def _generate_examples(self, archive_iterators):
|
| 88 |
"""Yields examples."""
|
| 89 |
+
for archive_iterator in archive_iterators:
|
| 90 |
+
for xz_filepath, xz_f in archive_iterator:
|
| 91 |
+
if not xz_filepath.endswith(".xz"):
|
| 92 |
+
continue
|
| 93 |
+
for txt_filepath, txt_f in _iter_tar(xz_f):
|
| 94 |
+
if not txt_filepath.endswith(".txt"):
|
| 95 |
+
continue
|
| 96 |
+
idx = f"{xz_filepath}/{txt_filepath}"
|
| 97 |
+
yield idx, {"text": re.sub("\n\n\n+", "\n\n", txt_f.read().decode("utf-8")).strip()}
|