| import csv | |
| import pandas as pd | |
| import datasets | |
| from sklearn.model_selection import train_test_split | |
| from datasets.tasks import TextClassification | |
| _DATASET_LABELS = ['NEGATIVE', 'POSITIVE', 'NEUTRAL'] | |
| class Custom(datasets.GeneratorBasedBuilder): | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description='', | |
| features=datasets.Features( | |
| { | |
| 'text': datasets.Value('string'), | |
| 'label': datasets.features.ClassLabel( | |
| names=_DATASET_LABELS | |
| ), | |
| } | |
| ), | |
| homepage='', | |
| citation='', | |
| task_templates=[ | |
| TextClassification(text_column='text', label_column='label') | |
| ], | |
| ) | |
| def _split_generators(self, dl_manager): | |
| data_path = dl_manager.download_and_extract('data.csv') | |
| records = pd.read_csv(data_path) | |
| train_df, val_df = train_test_split(records, test_size=0.2, random_state=42) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, gen_kwargs={'df': train_df} | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, gen_kwargs={'df': val_df} | |
| ), | |
| ] | |
| def _generate_examples(self, df): | |
| for id_, row in df.iterrows(): | |
| text, label = row['text'], row['label'], | |
| label = _DATASET_LABELS.index(label) | |
| yield id_, {'text': text, 'label': label} |