import argparse import numpy as np import torch import torch.nn.functional as F import torch.utils.data as data from .pytorch_i3d import InceptionI3d import os from sklearn.metrics.pairwise import polynomial_kernel MAX_BATCH = 10 FVD_SAMPLE_SIZE = 2048 TARGET_RESOLUTION = (224, 224) def preprocess(videos, target_resolution): # videos in {0, ..., 255} as np.uint8 array b, t, h, w, c = videos.shape all_frames = torch.FloatTensor(videos).flatten(end_dim=1) # (b * t, h, w, c) all_frames = all_frames.permute(0, 3, 1, 2).contiguous() # (b * t, c, h, w) resized_videos = F.interpolate(all_frames, size=target_resolution, mode='bilinear', align_corners=False) resized_videos = resized_videos.view(b, t, c, *target_resolution) output_videos = resized_videos.transpose(1, 2).contiguous() # (b, c, t, *) scaled_videos = 2. * output_videos / 255. - 1 # [-1, 1] return scaled_videos def get_fvd_logits(videos, i3d, device): videos = preprocess(videos, TARGET_RESOLUTION) embeddings = get_logits(i3d, videos, device) return embeddings def load_fvd_model(device): i3d = InceptionI3d(400, in_channels=3).to(device) current_dir = os.path.dirname(os.path.abspath(__file__)) i3d_path = os.path.join(current_dir, 'weights', 'i3d_pretrained_400.pt') i3d.load_state_dict(torch.load(i3d_path, map_location=device)) i3d.eval() return i3d # https://github.com/tensorflow/gan/blob/de4b8da3853058ea380a6152bd3bd454013bf619/tensorflow_gan/python/eval/classifier_metrics.py#L161 def _symmetric_matrix_square_root(mat, eps=1e-10): u, s, v = torch.svd(mat) si = torch.where(s < eps, s, torch.sqrt(s)) return torch.matmul(torch.matmul(u, torch.diag(si)), v.t()) # https://github.com/tensorflow/gan/blob/de4b8da3853058ea380a6152bd3bd454013bf619/tensorflow_gan/python/eval/classifier_metrics.py#L400 def trace_sqrt_product(sigma, sigma_v): sqrt_sigma = _symmetric_matrix_square_root(sigma) sqrt_a_sigmav_a = torch.matmul(sqrt_sigma, torch.matmul(sigma_v, sqrt_sigma)) return torch.trace(_symmetric_matrix_square_root(sqrt_a_sigmav_a)) # https://discuss.pytorch.org/t/covariance-and-gradient-support/16217/2 def cov(m, rowvar=False): '''Estimate a covariance matrix given data. Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, `X = [x_1, x_2, ... x_N]^T`, then the covariance matrix element `C_{ij}` is the covariance of `x_i` and `x_j`. The element `C_{ii}` is the variance of `x_i`. Args: m: A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. rowvar: If `rowvar` is True, then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. Returns: The covariance matrix of the variables. ''' if m.dim() > 2: raise ValueError('m has more than 2 dimensions') if m.dim() < 2: m = m.view(1, -1) if not rowvar and m.size(0) != 1: m = m.t() fact = 1.0 / (m.size(1) - 1) # unbiased estimate m_center = m - torch.mean(m, dim=1, keepdim=True) mt = m_center.t() # if complex: mt = m.t().conj() return fact * m_center.matmul(mt).squeeze() def frechet_distance(x1, x2): x1 = x1.flatten(start_dim=1) x2 = x2.flatten(start_dim=1) m, m_w = x1.mean(dim=0), x2.mean(dim=0) sigma, sigma_w = cov(x1, rowvar=False), cov(x2, rowvar=False) sqrt_trace_component = trace_sqrt_product(sigma, sigma_w) trace = torch.trace(sigma + sigma_w) - 2.0 * sqrt_trace_component mean = torch.sum((m - m_w) ** 2) fd = trace + mean return fd def polynomial_mmd(X, Y): m = X.shape[0] n = Y.shape[0] # compute kernels K_XX = polynomial_kernel(X) K_YY = polynomial_kernel(Y) K_XY = polynomial_kernel(X, Y) # compute mmd distance K_XX_sum = (K_XX.sum() - np.diagonal(K_XX).sum()) / (m * (m - 1)) K_YY_sum = (K_YY.sum() - np.diagonal(K_YY).sum()) / (n * (n - 1)) K_XY_sum = K_XY.sum() / (m * n) mmd = K_XX_sum + K_YY_sum - 2 * K_XY_sum return mmd def get_logits(i3d, videos, device): # assert videos.shape[0] % MAX_BATCH == 0 with torch.no_grad(): logits = [] for i in range(0, videos.shape[0], MAX_BATCH): batch = videos[i:i + MAX_BATCH].to(device) logits.append(i3d(batch)) logits = torch.cat(logits, dim=0) return logits # def compute_fvd(real, samples, i3d, device=torch.device('cpu')): def compute_fvd(real, samples, i3d, device=torch.device('cuda')): # real, samples are (N, T, H, W, C) numpy arrays in np.uint8 # real, samples = preprocess(real, (224, 224)), preprocess(samples, (224, 224)) first_embed = get_logits(i3d, real, device) second_embed = get_logits(i3d, samples, device) return frechet_distance(first_embed, second_embed) i3d = load_fvd_model(device=torch.device('cuda')) def calculate_fvd(real, samples): return compute_fvd(real, samples, i3d, device=torch.device('cuda')).cpu().numpy()