import os import numpy as np import torch import matplotlib.pyplot as plt import torchvision.transforms.functional as F torch.backends.cudnn.benchmark = True torch.backends.cudnn.enabled=False torch.backends.cudnn.deterministic = True from torchvision.models.optical_flow import Raft_Large_Weights weights = Raft_Large_Weights.DEFAULT transforms = weights.transforms() def preprocess(source_batch, target_batch): source_batch = F.resize(source_batch, size=[480, 832], antialias=False) target_batch = F.resize(target_batch, size=[480, 832], antialias=False) return transforms(source_batch, target_batch) from torchvision.models.optical_flow import raft_large # If you can, run this example on a GPU, it will be a lot faster. device = "cuda" if torch.cuda.is_available() else "cpu" model = raft_large(weights=Raft_Large_Weights.DEFAULT, progress=False).to(device) model = model.eval() def calculate_epe(img1_batch, img2_batch): # img [N, C, H, W] # first calculate the op of img1 and img2 img1_source, img1_target = preprocess(img1_batch[:-1], img1_batch[1:]) img2_source, img2_target = preprocess(img2_batch[:-1], img2_batch[1:]) # op img1_flows = model(img1_source.to(device).contiguous(), img1_target.to(device).contiguous())[-1] # [N, 2, H, W] img2_flows = model(img2_source.to(device).contiguous(), img2_target.to(device).contiguous())[-1] # epe diff = img1_flows - img2_flows epe = torch.norm(diff, p=2, dim=1) mean_epe = epe.mean() return mean_epe.cpu().numpy()