from tqdm import tqdm from PIL import Image import torch import os import numpy as np from transformers import CLIPProcessor, CLIPModel device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14").to(device) processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") def calculate_clip_I(image1, image2): inputs1 = processor(images=image1, return_tensors="pt").to(device) inputs2 = processor(images=image2, return_tensors="pt").to(device) with torch.no_grad(): image_features1 = model.get_image_features(**inputs1) image_features2 = model.get_image_features(**inputs2) image_features1 /= image_features1.norm(dim=-1, keepdim=True) image_features2 /= image_features2.norm(dim=-1, keepdim=True) similarity = torch.matmul(image_features1, image_features2.T).cpu().numpy()[0][0] return similarity