|
|
import os |
|
|
import numpy as np |
|
|
import torch |
|
|
import matplotlib.pyplot as plt |
|
|
import torchvision.transforms.functional as F |
|
|
torch.backends.cudnn.benchmark = True |
|
|
torch.backends.cudnn.enabled=False |
|
|
torch.backends.cudnn.deterministic = True |
|
|
|
|
|
from torchvision.models.optical_flow import Raft_Large_Weights |
|
|
|
|
|
weights = Raft_Large_Weights.DEFAULT |
|
|
transforms = weights.transforms() |
|
|
|
|
|
|
|
|
def preprocess(source_batch, target_batch): |
|
|
source_batch = F.resize(source_batch, size=[480, 832], antialias=False) |
|
|
target_batch = F.resize(target_batch, size=[480, 832], antialias=False) |
|
|
return transforms(source_batch, target_batch) |
|
|
|
|
|
from torchvision.models.optical_flow import raft_large |
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
model = raft_large(weights=Raft_Large_Weights.DEFAULT, progress=False).to(device) |
|
|
model = model.eval() |
|
|
|
|
|
def calculate_epe(img1_batch, img2_batch): |
|
|
|
|
|
|
|
|
|
|
|
img1_source, img1_target = preprocess(img1_batch[:-1], img1_batch[1:]) |
|
|
img2_source, img2_target = preprocess(img2_batch[:-1], img2_batch[1:]) |
|
|
|
|
|
|
|
|
img1_flows = model(img1_source.to(device).contiguous(), img1_target.to(device).contiguous())[-1] |
|
|
img2_flows = model(img2_source.to(device).contiguous(), img2_target.to(device).contiguous())[-1] |
|
|
|
|
|
|
|
|
diff = img1_flows - img2_flows |
|
|
epe = torch.norm(diff, p=2, dim=1) |
|
|
mean_epe = epe.mean() |
|
|
|
|
|
return mean_epe.cpu().numpy() |
|
|
|