Datasets:

Tasks:
Other
Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
w11wo commited on
Commit
aec2047
·
1 Parent(s): e6db3c7

update dataset card

Browse files
Files changed (1) hide show
  1. README.md +4 -1
README.md CHANGED
@@ -105,10 +105,11 @@ configs:
105
 
106
  ## Dataset Summary
107
 
108
- **[Massive-STEPS](https://github.com/cruiseresearchgroup/Massive-STEPS)** is a large-scale dataset of semantic trajectories intended for understanding POI check-ins. The dataset is derived from the [Semantic Trails Dataset](https://github.com/D2KLab/semantic-trails) and [Foursquare Open Source Places](https://huggingface.co/datasets/foursquare/fsq-os-places), and includes check-in data from 12 cities across 10 countries. The dataset is designed to facilitate research in various domains, including trajectory prediction, POI recommendation, and urban modeling. Massive-STEPS emphasizes the importance of geographical diversity, scale, semantic richness, and reproducibility in trajectory datasets.
109
 
110
  | **City** | **URL** |
111
  | --------------- | :---------------------------------------------------------------------: |
 
112
  | Beijing 🇨🇳 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Beijing/) |
113
  | Istanbul 🇹🇷 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Istanbul/) |
114
  | Jakarta 🇮🇩 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Jakarta/) |
@@ -116,10 +117,12 @@ configs:
116
  | Melbourne 🇦🇺 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Melbourne/) |
117
  | Moscow 🇷🇺 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Moscow/) |
118
  | New York 🇺🇸 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-New-York/) |
 
119
  | Petaling Jaya 🇲🇾 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Petaling-Jaya/) |
120
  | São Paulo 🇧🇷 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Sao-Paulo/) |
121
  | Shanghai 🇨🇳 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Shanghai/) |
122
  | Sydney 🇦🇺 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Sydney/) |
 
123
  | Tokyo 🇯🇵 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Tokyo/) |
124
 
125
  ### Dataset Sources
 
105
 
106
  ## Dataset Summary
107
 
108
+ **[Massive-STEPS](https://github.com/cruiseresearchgroup/Massive-STEPS)** is a large-scale dataset of semantic trajectories intended for understanding POI check-ins. The dataset is derived from the [Semantic Trails Dataset](https://github.com/D2KLab/semantic-trails) and [Foursquare Open Source Places](https://huggingface.co/datasets/foursquare/fsq-os-places), and includes check-in data from 15 cities across 10 countries. The dataset is designed to facilitate research in various domains, including trajectory prediction, POI recommendation, and urban modeling. Massive-STEPS emphasizes the importance of geographical diversity, scale, semantic richness, and reproducibility in trajectory datasets.
109
 
110
  | **City** | **URL** |
111
  | --------------- | :---------------------------------------------------------------------: |
112
+ | Bandung 🇮🇩 | [🤗](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Bandung/) |
113
  | Beijing 🇨🇳 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Beijing/) |
114
  | Istanbul 🇹🇷 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Istanbul/) |
115
  | Jakarta 🇮🇩 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Jakarta/) |
 
117
  | Melbourne 🇦🇺 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Melbourne/) |
118
  | Moscow 🇷🇺 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Moscow/) |
119
  | New York 🇺🇸 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-New-York/) |
120
+ | Palembang 🇮🇩 | [🤗](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Palembang/) |
121
  | Petaling Jaya 🇲🇾 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Petaling-Jaya/) |
122
  | São Paulo 🇧🇷 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Sao-Paulo/) |
123
  | Shanghai 🇨🇳 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Shanghai/) |
124
  | Sydney 🇦🇺 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Sydney/) |
125
+ | Tangerang 🇮🇩 | [🤗](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Tangerang/) |
126
  | Tokyo 🇯🇵 | [🤗](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Tokyo/) |
127
 
128
  ### Dataset Sources