Datasets:
Add task category and Github link to dataset card
Browse filesThis PR adds the `task_categories` metadata field and a link to the Github repository for better discoverability and clarity. The "other" category is used as no more specific category is available, but we suggest adding descriptive tags such as `poi-recommendation`, `trajectory-prediction`, `human-mobility` to improve searchability.
README.md
CHANGED
|
@@ -1,5 +1,11 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
dataset_info:
|
| 4 |
- config_name: default
|
| 5 |
features:
|
|
@@ -92,13 +98,13 @@ configs:
|
|
| 92 |
|
| 93 |
[](https://huggingface.co/collections/w11wo/massive-steps-point-of-interest-check-in-dataset-67edf6dbb60e30eac9a9af1b)
|
| 94 |
[](https://arxiv.org/abs/2505.11239)
|
| 95 |
-
[](https://github.com/
|
| 96 |
|
| 97 |
</div>
|
| 98 |
|
| 99 |
## Dataset Summary
|
| 100 |
|
| 101 |
-
**[Massive-STEPS](https://github.com/
|
| 102 |
|
| 103 |
| **City** | **URL** |
|
| 104 |
| --------------- | :---------------------------------------------------------------------: |
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- other
|
| 5 |
+
tags:
|
| 6 |
+
- poi-recommendation
|
| 7 |
+
- trajectory-prediction
|
| 8 |
+
- human-mobility
|
| 9 |
dataset_info:
|
| 10 |
- config_name: default
|
| 11 |
features:
|
|
|
|
| 98 |
|
| 99 |
[](https://huggingface.co/collections/w11wo/massive-steps-point-of-interest-check-in-dataset-67edf6dbb60e30eac9a9af1b)
|
| 100 |
[](https://arxiv.org/abs/2505.11239)
|
| 101 |
+
[](https://github.com/cruiseresearchgroup/Massive-STEPS)
|
| 102 |
|
| 103 |
</div>
|
| 104 |
|
| 105 |
## Dataset Summary
|
| 106 |
|
| 107 |
+
**[Massive-STEPS](https://github.com/cruiseresearchgroup/Massive-STEPS)** is a large-scale dataset of semantic trajectories intended for understanding POI check-ins. The dataset is derived from the [Semantic Trails Dataset](https://github.com/D2KLab/semantic-trails) and [Foursquare Open Source Places](https://huggingface.co/datasets/foursquare/fsq-os-places), and includes check-in data from 12 cities across 10 countries. The dataset is designed to facilitate research in various domains, including trajectory prediction, POI recommendation, and urban modeling. Massive-STEPS emphasizes the importance of geographical diversity, scale, semantic richness, and reproducibility in trajectory datasets.
|
| 108 |
|
| 109 |
| **City** | **URL** |
|
| 110 |
| --------------- | :---------------------------------------------------------------------: |
|