Datasets:

Tasks:
Other
Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
nielsr HF Staff commited on
Commit
74df96e
·
verified ·
1 Parent(s): 692faea

Add task category and Github link to dataset card

Browse files

This PR adds the `task_categories` metadata field and a link to the Github repository for better discoverability and clarity. The "other" category is used as no more specific category is available, but we suggest adding descriptive tags such as `poi-recommendation`, `trajectory-prediction`, `human-mobility` to improve searchability.

Files changed (1) hide show
  1. README.md +8 -2
README.md CHANGED
@@ -1,5 +1,11 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
3
  dataset_info:
4
  - config_name: default
5
  features:
@@ -92,13 +98,13 @@ configs:
92
 
93
  [![huggingface](https://img.shields.io/badge/%F0%9F%A4%97-Hugging_Face_Collections-yellow)](https://huggingface.co/collections/w11wo/massive-steps-point-of-interest-check-in-dataset-67edf6dbb60e30eac9a9af1b)
94
  [![arXiv](https://img.shields.io/badge/arXiv-2505.11239-b31b1b.svg)](https://arxiv.org/abs/2505.11239)
95
- [![GitHub](https://img.shields.io/badge/github-%23121011.svg?logo=github&logoColor=white)](https://github.com/w11wo/Massive-STEPS)
96
 
97
  </div>
98
 
99
  ## Dataset Summary
100
 
101
- **[Massive-STEPS](https://github.com/w11wo/Massive-STEPS)** is a large-scale dataset of semantic trajectories intended for understanding POI check-ins. The dataset is derived from the [Semantic Trails Dataset](https://github.com/D2KLab/semantic-trails) and [Foursquare Open Source Places](https://huggingface.co/datasets/foursquare/fsq-os-places), and includes check-in data from 12 cities across 10 countries. The dataset is designed to facilitate research in various domains, including trajectory prediction, POI recommendation, and urban modeling. Massive-STEPS emphasizes the importance of geographical diversity, scale, semantic richness, and reproducibility in trajectory datasets.
102
 
103
  | **City** | **URL** |
104
  | --------------- | :---------------------------------------------------------------------: |
 
1
  ---
2
  license: apache-2.0
3
+ task_categories:
4
+ - other
5
+ tags:
6
+ - poi-recommendation
7
+ - trajectory-prediction
8
+ - human-mobility
9
  dataset_info:
10
  - config_name: default
11
  features:
 
98
 
99
  [![huggingface](https://img.shields.io/badge/%F0%9F%A4%97-Hugging_Face_Collections-yellow)](https://huggingface.co/collections/w11wo/massive-steps-point-of-interest-check-in-dataset-67edf6dbb60e30eac9a9af1b)
100
  [![arXiv](https://img.shields.io/badge/arXiv-2505.11239-b31b1b.svg)](https://arxiv.org/abs/2505.11239)
101
+ [![GitHub](https://img.shields.io/badge/github-%23121011.svg?logo=github&logoColor=white)](https://github.com/cruiseresearchgroup/Massive-STEPS)
102
 
103
  </div>
104
 
105
  ## Dataset Summary
106
 
107
+ **[Massive-STEPS](https://github.com/cruiseresearchgroup/Massive-STEPS)** is a large-scale dataset of semantic trajectories intended for understanding POI check-ins. The dataset is derived from the [Semantic Trails Dataset](https://github.com/D2KLab/semantic-trails) and [Foursquare Open Source Places](https://huggingface.co/datasets/foursquare/fsq-os-places), and includes check-in data from 12 cities across 10 countries. The dataset is designed to facilitate research in various domains, including trajectory prediction, POI recommendation, and urban modeling. Massive-STEPS emphasizes the importance of geographical diversity, scale, semantic richness, and reproducibility in trajectory datasets.
108
 
109
  | **City** | **URL** |
110
  | --------------- | :---------------------------------------------------------------------: |