Upload textnet models
Browse files- README.md +56 -3
- config.json +146 -0
- model.safetensors +3 -0
- preprocessor_config.json +28 -0
README.md
CHANGED
|
@@ -1,3 +1,56 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
---
|
| 4 |
+
## TextNet-T/S/B: Efficient Text Detection Models
|
| 5 |
+
|
| 6 |
+
### **Overview**
|
| 7 |
+
TextNet is a lightweight and efficient architecture designed specifically for text detection, offering superior performance compared to traditional models like MobileNetV3. With variants **TextNet-T**, **TextNet-S**, and **TextNet-B** (6.8M, 8.0M, and 8.9M parameters respectively), it achieves an excellent balance between accuracy and inference speed.
|
| 8 |
+
|
| 9 |
+
### **Performance**
|
| 10 |
+
TextNet achieves state-of-the-art results in text detection, outperforming hand-crafted models in both accuracy and speed. Its architecture is highly efficient, making it ideal for GPU-based applications.
|
| 11 |
+
|
| 12 |
+
### How to use
|
| 13 |
+
### Transformers
|
| 14 |
+
```bash
|
| 15 |
+
pip install transformers
|
| 16 |
+
```
|
| 17 |
+
|
| 18 |
+
```python
|
| 19 |
+
import torch
|
| 20 |
+
import requests
|
| 21 |
+
from PIL import Image
|
| 22 |
+
from transformers import AutoImageProcessor, AutoBackbone
|
| 23 |
+
|
| 24 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 25 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 26 |
+
|
| 27 |
+
processor = AutoImageProcessor.from_pretrained("jadechoghari/textnet-tiny")
|
| 28 |
+
model = AutoBackbone.from_pretrained("jadechoghari/textnet-base")
|
| 29 |
+
|
| 30 |
+
inputs = processor(image, return_tensors="pt")
|
| 31 |
+
with torch.no_grad():
|
| 32 |
+
outputs = model(**inputs)
|
| 33 |
+
```
|
| 34 |
+
### **Training**
|
| 35 |
+
We first compare TextNet with representative hand-crafted backbones,
|
| 36 |
+
such as ResNets and VGG16. For a fair comparison,
|
| 37 |
+
all models are first pre-trained on IC17-MLT [52] and then
|
| 38 |
+
finetuned on Total-Text. The proposed
|
| 39 |
+
TextNet models achieve a better trade-off between accuracy
|
| 40 |
+
and inference speed than previous hand-crafted models by a
|
| 41 |
+
significant margin. In addition, notably, our TextNet-T, -S, and
|
| 42 |
+
-B only have 6.8M, 8.0M, and 8.9M parameters respectively,
|
| 43 |
+
which are more parameter-efficient than ResNets and VGG16.
|
| 44 |
+
These results demonstrate that TextNet models are effective for
|
| 45 |
+
text detection on the GPU device.
|
| 46 |
+
|
| 47 |
+
### **Applications**
|
| 48 |
+
Perfect for real-world text detection tasks, including:
|
| 49 |
+
- Natural scene text recognition
|
| 50 |
+
- Multi-lingual and multi-oriented text detection
|
| 51 |
+
- Document text region analysis
|
| 52 |
+
|
| 53 |
+
### **Contribution**
|
| 54 |
+
This model was contributed by [Raghavan](https://huggingface.co/Raghavan),
|
| 55 |
+
[jadechoghari](https://huggingface.co/jadechoghari)
|
| 56 |
+
and [nielsr](https://huggingface.co/nielsr).
|
config.json
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"TextNetBackbone"
|
| 4 |
+
],
|
| 5 |
+
"batch_norm_eps": 1e-05,
|
| 6 |
+
"conv_layer_kernel_sizes": [
|
| 7 |
+
[
|
| 8 |
+
[
|
| 9 |
+
3,
|
| 10 |
+
3
|
| 11 |
+
],
|
| 12 |
+
[
|
| 13 |
+
3,
|
| 14 |
+
3
|
| 15 |
+
],
|
| 16 |
+
[
|
| 17 |
+
3,
|
| 18 |
+
3
|
| 19 |
+
]
|
| 20 |
+
],
|
| 21 |
+
[
|
| 22 |
+
[
|
| 23 |
+
3,
|
| 24 |
+
3
|
| 25 |
+
],
|
| 26 |
+
[
|
| 27 |
+
1,
|
| 28 |
+
3
|
| 29 |
+
],
|
| 30 |
+
[
|
| 31 |
+
3,
|
| 32 |
+
3
|
| 33 |
+
],
|
| 34 |
+
[
|
| 35 |
+
3,
|
| 36 |
+
1
|
| 37 |
+
]
|
| 38 |
+
],
|
| 39 |
+
[
|
| 40 |
+
[
|
| 41 |
+
3,
|
| 42 |
+
3
|
| 43 |
+
],
|
| 44 |
+
[
|
| 45 |
+
3,
|
| 46 |
+
3
|
| 47 |
+
],
|
| 48 |
+
[
|
| 49 |
+
3,
|
| 50 |
+
1
|
| 51 |
+
],
|
| 52 |
+
[
|
| 53 |
+
1,
|
| 54 |
+
3
|
| 55 |
+
]
|
| 56 |
+
],
|
| 57 |
+
[
|
| 58 |
+
[
|
| 59 |
+
3,
|
| 60 |
+
3
|
| 61 |
+
],
|
| 62 |
+
[
|
| 63 |
+
3,
|
| 64 |
+
1
|
| 65 |
+
],
|
| 66 |
+
[
|
| 67 |
+
1,
|
| 68 |
+
3
|
| 69 |
+
],
|
| 70 |
+
[
|
| 71 |
+
3,
|
| 72 |
+
3
|
| 73 |
+
]
|
| 74 |
+
]
|
| 75 |
+
],
|
| 76 |
+
"conv_layer_strides": [
|
| 77 |
+
[
|
| 78 |
+
1,
|
| 79 |
+
2,
|
| 80 |
+
1
|
| 81 |
+
],
|
| 82 |
+
[
|
| 83 |
+
2,
|
| 84 |
+
1,
|
| 85 |
+
1,
|
| 86 |
+
1
|
| 87 |
+
],
|
| 88 |
+
[
|
| 89 |
+
2,
|
| 90 |
+
1,
|
| 91 |
+
1,
|
| 92 |
+
1
|
| 93 |
+
],
|
| 94 |
+
[
|
| 95 |
+
2,
|
| 96 |
+
1,
|
| 97 |
+
1,
|
| 98 |
+
1
|
| 99 |
+
]
|
| 100 |
+
],
|
| 101 |
+
"depths": [
|
| 102 |
+
3,
|
| 103 |
+
4,
|
| 104 |
+
4,
|
| 105 |
+
4
|
| 106 |
+
],
|
| 107 |
+
"hidden_sizes": [
|
| 108 |
+
64,
|
| 109 |
+
64,
|
| 110 |
+
128,
|
| 111 |
+
256,
|
| 112 |
+
512
|
| 113 |
+
],
|
| 114 |
+
"image_size": [
|
| 115 |
+
640,
|
| 116 |
+
640
|
| 117 |
+
],
|
| 118 |
+
"initializer_range": 0.02,
|
| 119 |
+
"model_type": "textnet",
|
| 120 |
+
"out_features": [
|
| 121 |
+
"stage1",
|
| 122 |
+
"stage2",
|
| 123 |
+
"stage3",
|
| 124 |
+
"stage4"
|
| 125 |
+
],
|
| 126 |
+
"out_indices": [
|
| 127 |
+
1,
|
| 128 |
+
2,
|
| 129 |
+
3,
|
| 130 |
+
4
|
| 131 |
+
],
|
| 132 |
+
"stage_names": [
|
| 133 |
+
"stem",
|
| 134 |
+
"stage1",
|
| 135 |
+
"stage2",
|
| 136 |
+
"stage3",
|
| 137 |
+
"stage4"
|
| 138 |
+
],
|
| 139 |
+
"stem_act_func": "relu",
|
| 140 |
+
"stem_kernel_size": 3,
|
| 141 |
+
"stem_num_channels": 3,
|
| 142 |
+
"stem_out_channels": 64,
|
| 143 |
+
"stem_stride": 2,
|
| 144 |
+
"torch_dtype": "float32",
|
| 145 |
+
"transformers_version": "4.48.0.dev0"
|
| 146 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:203334ca0d2f1a0f8b4dbfe2ad37f73d215ce681c25443ccdc483d845f3435cb
|
| 3 |
+
size 42955744
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": {
|
| 3 |
+
"height": 224,
|
| 4 |
+
"width": 224
|
| 5 |
+
},
|
| 6 |
+
"do_center_crop": false,
|
| 7 |
+
"do_convert_rgb": true,
|
| 8 |
+
"do_normalize": true,
|
| 9 |
+
"do_rescale": true,
|
| 10 |
+
"do_resize": true,
|
| 11 |
+
"image_mean": [
|
| 12 |
+
0.485,
|
| 13 |
+
0.456,
|
| 14 |
+
0.406
|
| 15 |
+
],
|
| 16 |
+
"image_processor_type": "TextNetImageProcessor",
|
| 17 |
+
"image_std": [
|
| 18 |
+
0.229,
|
| 19 |
+
0.224,
|
| 20 |
+
0.225
|
| 21 |
+
],
|
| 22 |
+
"resample": 2,
|
| 23 |
+
"rescale_factor": 0.00392156862745098,
|
| 24 |
+
"size": {
|
| 25 |
+
"shortest_edge": 640
|
| 26 |
+
},
|
| 27 |
+
"size_divisor": 32
|
| 28 |
+
}
|