--- license: gpl-2.0 tags: - anomaly-detection - clip - zero-shot - few-shot - industrial-inspection - universal-anomaly-detection pipeline_tag: image-segmentation library_name: pytorch datasets: - MVTec-AD - VisA language: - en base_model: - openai/clip-vit-large-patch14-336 --- # AdaptCLIP Universal Visual Anomaly Detection model based on CLIP with learnable adapters. ## Model Description AdaptCLIP is a universal (zero-shot and few-shot) anomaly detection framework that leverages CLIP's vision-language capabilities with lightweight learnable adapters for open-word industrial and medical anomaly detection. ## Model Variants | Checkpoint | Training Dataset | Description | |------------|------------------|-------------| | `adaptclip_checkpoints/12_4_128_train_on_mvtec_3adapters_batch8/epoch_15.pth` | MVTec-AD | Trained on MVTec-AD dataset | | `adaptclip_checkpoints/12_4_128_train_on_visa_3adapters_batch8/epoch_15.pth` | VisA | Trained on VisA dataset | ## Usage ```python # Load checkpoint import torch checkpoint = torch.load("./adaptclip_checkpoints/12_4_128_train_on_mvtec_3adapters_batch8/epoch_15.pth") ``` ## Citation If you find this model useful, please cite our work. ```shell @inproceedings{adaptclip, title={AdaptCLIP: Adapting CLIP for Universal Visual Anomaly Detection}, author={Gao, Bin-Bin and Zhou, Yue and Yan, Jiangtao and Cai, Yuezhi and Zhang, Weixi and Wang, Meng and Liu, Jun and Liu, Yong and Wang, Lei and Wang, Chengjie}, booktitle={AAAI} year={2026} } ``` ## License gpl-2.0