File size: 10,275 Bytes
525a7dd 2590e1a 525a7dd 3247f5f 525a7dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
---
license: apple-amlr
language:
- en
tags:
- normalizing-flows
- generative-models
- art
- autoregressive-models
---
# STARFlow: Scalable Transformer Auto-Regressive Flow
<div align="center">
<img src="starflow_logo.png" alt="STARFlow Logo" width="300">
</div>
<div align="center">
[](https://arxiv.org/abs/2506.06276)
[](https://arxiv.org/abs/2511.20462)
[](https://neurips.cc/Conferences/2025)
</div>
This is the official open source release of **STARFlow** and **STARFlow-V**, state-of-the-art transformer autoregressive flow models for high-quality image and video generation.
## π Overview
**STARFlow** introduces a novel transformer autoregressive flow architecture that combines the expressiveness of autoregressive models with the efficiency of normalizing flows. The model achieves state-of-the-art results in both text-to-image and text-to-video generation tasks.
- **[STARFlow](https://arxiv.org/abs/2506.06276)**: Scaling Latent Normalizing Flows for High-resolution Image Synthesis (NeurIPS 2025 Spotlight)
- **[STARFlow-V](https://arxiv.org/abs/2511.20462)**: End-to-End Video Generative Modeling with Normalizing Flows (Arxiv)
π¬ **[View Video Results Gallery](https://starflow-v.github.io)** - See examples of generated videos and comparisons
## π Quick Start
### Environment Setup
```bash
# Clone the repository
git clone https://github.com/apple/ml-starflow
cd ml-starflow
# Set up conda environment (recommended)
bash scripts/setup_conda.sh
# Or install dependencies manually
pip install -r requirements.txt
```
### Model Checkpoints
**Important**: You'll need to download the pretrained model checkpoints and place them in the `ckpts/` directory. For example:
- `ckpts/starflow_3B_t2i_256x256.pth` - For text-to-image generation
- `ckpts/starflow-v_7B_t2v_caus_480p_v3.pth` - For text-to-video generation
### Text-to-Image Generation
Generate high-quality images from text prompts:
```bash
# Basic image generation (256x256)
bash scripts/test_sample_image.sh "a film still of a cat playing piano"
# Custom prompt and settings
torchrun --standalone --nproc_per_node 1 sample.py \
--model_config_path "configs/starflow_3B_t2i_256x256.yaml" \
--checkpoint_path "ckpts/starflow_3B_t2i_256x256.pth" \
--caption "your custom prompt here" \
--sample_batch_size 8 \
--cfg 3.6 \
--aspect_ratio "1:1" \
--seed 999
```
### Text-to-Video Generation
Generate videos from text descriptions:
```bash
# Basic video generation (480p, ~5 seconds)
bash scripts/test_sample_video.sh "a corgi dog looks at the camera"
# With custom input image for TI2V video generation
bash scripts/test_sample_video.sh "a cat playing piano" "/path/to/input/image.jpg"
# Longer video generation (specify target length in frames)
bash scripts/test_sample_video.sh "a corgi dog looks at the camera" "none" 241 # ~15 seconds at 16fps
bash scripts/test_sample_video.sh "a corgi dog looks at the camera" "none" 481 # ~30 seconds at 16fps
# Advanced video generation
torchrun --standalone --nproc_per_node 8 sample.py \
--model_config_path "configs/starflow-v_7B_t2v_caus_480p.yaml" \
--checkpoint_path "ckpts/starflow-v_7B_t2v_caus_480p_v3.pth" \
--caption "your video prompt here" \
--sample_batch_size 1 \
--cfg 3.5 \
--aspect_ratio "16:9" \
--out_fps 16 \
--jacobi 1 --jacobi_th 0.001 \
--target_length 161 # Customize video length
```
## π οΈ Training
### Image Training
Train your own STARFlow model for text-to-image generation:
```bash
# Quick training test
bash scripts/test_train_image.sh 10 16
# Full training with custom parameters
torchrun --standalone --nproc_per_node 8 train.py \
--model_config_path "configs/starflow_3B_t2i_256x256.yaml" \
--epochs 100 \
--batch_size 1024 \
--wandb_name "my_starflow_training"
```
### Video Training
Train STARFlow-V for text-to-video generation:
```bash
# Quick training test
bash scripts/test_train_video.sh 10 8
# Resume training from checkpoint
torchrun --standalone --nproc_per_node 8 train.py \
--model_config_path "configs/starflow-v_7B_t2v_caus_480p.yaml" \
--resume_path "ckpts/starflow-v_7B_t2v_caus_480p_v3.pth" \
--epochs 100 \
--batch_size 192
```
## π§ Utilities
### Video Processing
Extract individual frames from multi-video grids:
```bash
# Extract frames from a video containing multiple video grids
python scripts/extract_image_from_video.py --input_video path/to/video.mp4 --output_dir output/
# Extract images with custom settings
python scripts/extract_images.py input_file.mp4
```
## π Model Architecture
### STARFlow (3B Parameters - Text-to-Image)
- **Resolution**: 256Γ256
- **Architecture**: 6-block deep-shallow architecture
- **Text Encoder**: T5-XL
- **VAE**: SD-VAE
- **Features**: RoPE positional encoding, mixed precision training
### STARFlow-V (7B Parameters - Text-to-Video)
- **Resolution**: Up to 640Γ480 (480p)
- **Temporal**: 81 frames (16 FPS = ~5 seconds)
- **Architecture**: 6-block deep-shallow architecture (full sequence)
- **Text Encoder**: T5-XL
- **VAE**: WAN2.2-VAE
- **Features**: Causal attention, autoregressive generation, variable length support
## π§ Key Features
- **Autoregressive Flow Architecture**: Novel combination of autoregressive models and normalizing flows
- **High-Quality Generation**: Competetive FID scores and visual quality to State-of-the-art Diffusion Models
- **Flexible Resolution**: Support for various aspect ratios and resolutions
- **Efficient Training**: FSDP support for large-scale distributed training
- **Fast Sampling**: Block-wise Jacobi iteration for accelerated inference
- **Text Conditioning**: Advanced text-to-image/video capabilities
- **Video Generation**: Temporal consistency and smooth motion
## π Configuration
### Key Parameters
#### Image Generation (`starflow_3B_t2i_256x256.yaml`)
- `img_size: 256` - Output image resolution
- `txt_size: 128` - Text sequence length
- `channels: 3072` - Model hidden dimension
- `cfg: 3.6` - Classifier-free guidance scale
- `noise_std: 0.3` - Flow noise standard deviation
#### Video Generation (`starflow-v_7B_t2v_caus_480p.yaml`)
- `img_size: 640` - Video frame resolution
- `vid_size: '81:16'` - Temporal dimensions (frames:downsampling)
- `fps_cond: 1` - FPS conditioning enabled
- `temporal_causal: 1` - Causal temporal attention
### Sampling Options
- `--cfg` - Classifier-free guidance scale (higher = more prompt adherence)
- `--jacobi` - Enable Jacobi iteration for faster sampling
- `--jacobi_th` - Jacobi convergence threshold
- `--jacobi_block_size` - Block size for Jacobi iteration
- `--aspect_ratio` - Output aspect ratio ("1:1", "16:9", "4:3", etc.)
- `--seed` - Random seed for reproducible generation
## π Project Structure
```
βββ train.py # Main training script
βββ sample.py # Sampling and inference
βββ transformer_flow.py # Core model implementation
βββ dataset.py # Dataset loading and preprocessing
βββ finetune_decoder.py # Decoder fine-tuning script
βββ utils/ # Utility modules
β βββ common.py # Core utility functions
β βββ model_setup.py # Model configuration and setup
β βββ training.py # Training utilities and metrics
β βββ inference.py # Evaluation and metrics
βββ configs/ # Model configuration files
β βββ starflow_3B_t2i_256x256.yaml
β βββ starflow-v_7B_t2v_caus_480p.yaml
βββ scripts/ # Example training and sampling scripts
β βββ test_sample_image.sh
β βββ test_sample_video.sh
β βββ test_train_image.sh
β βββ test_train_video.sh
β βββ setup_conda.sh
β βββ extract_images.py
β βββ extract_image_from_video.py
βββ misc/ # Additional utilities
βββ pe.py # Positional encodings
βββ lpips.py # LPIPS loss
βββ wan_vae2.py # Video VAE implementation
```
## π‘ Tips
### Image Generation
1. Use guidance scales between 2.0-5.0 for balanced quality and diversity
2. Experiment with different aspect ratios for your use case
3. Enable Jacobi iteration (`--jacobi 1`) for faster sampling
4. Use higher resolution models for detailed outputs
5. The default script uses optimized settings: `--jacobi_th 0.001` and `--jacobi_block_size 16`
### Video Generation
1. Start with shorter sequences (81 frames) and gradually increase length (161, 241, 481+ frames)
2. Use input images (`--input_image`) for more controlled generation
3. Adjust FPS settings based on content type (8-24 FPS)
4. Consider temporal consistency when crafting prompts
5. The default script uses `--jacobi_block_size 64`.
6. **Longer videos**: Use `--target_length` to generate videos beyond the training length (requires `--jacobi 1`)
7. **Frame reference**: 81 frames β 5s, 161 frames β 10s, 241 frames β 15s, 481 frames β 30s (at 16fps)
### Training
1. Use FSDP for efficient large model training
2. Start with smaller batch sizes and scale up
3. Monitor loss curves and adjust learning rates accordingly
4. Use gradient checkpointing to reduce memory usage
5. The test scripts include `--dry_run 1` for validation
## π Citation
If you use STARFlow in your research, please cite:
```bibtex
@article{gu2025starflow,
title={STARFlow: Scaling Latent Normalizing Flows for High-resolution Image Synthesis},
author={Gu, Jiatao and Chen, Tianrong and Berthelot, David and Zheng, Huangjie and Wang, Yuyang and Zhang, Ruixiang and Dinh, Laurent and Bautista, Miguel Angel and Susskind, Josh and Zhai, Shuangfei},
journal={NeurIPS},
year={2025}
}
```
## π License
LICENSE: Please check out the repository [LICENSE](LICENSE) before using the provided code and [LICENSE_MODEL](LICENSE_MODEL) for the released models.
## π€ Contributing
We welcome contributions! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines. |