|
|
import torch |
|
|
from torch import nn, Tensor |
|
|
from typing import List |
|
|
from einops import rearrange |
|
|
|
|
|
from .blocks import conv3x3, conv1x1, Conv2dLayerNorm, _init_weights |
|
|
|
|
|
|
|
|
class MultiScale(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
channels: int, |
|
|
scales: List[int], |
|
|
heads: int = 8, |
|
|
groups: int = 1, |
|
|
mlp_ratio: float = 4.0, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
assert channels > 0, "channels should be a positive integer" |
|
|
assert isinstance(scales, (list, tuple)) and len(scales) > 0 and all([scale > 0 for scale in scales]), "scales should be a list or tuple of positive integers" |
|
|
assert heads > 0 and channels % heads == 0, "heads should be a positive integer and channels should be divisible by heads" |
|
|
assert groups > 0 and channels % groups == 0, "groups should be a positive integer and channels should be divisible by groups" |
|
|
scales = sorted(scales) |
|
|
self.scales = scales |
|
|
self.num_scales = len(scales) + 1 |
|
|
self.heads = heads |
|
|
self.groups = groups |
|
|
|
|
|
|
|
|
self.scale_0 = nn.Sequential( |
|
|
conv1x1(channels, channels, stride=1, bias=False), |
|
|
Conv2dLayerNorm(channels), |
|
|
nn.GELU(), |
|
|
) |
|
|
for scale in scales: |
|
|
setattr(self, f"conv_{scale}", nn.Sequential( |
|
|
conv3x3( |
|
|
in_channels=channels, |
|
|
out_channels=channels, |
|
|
stride=1, |
|
|
groups=groups, |
|
|
dilation=scale, |
|
|
bias=False, |
|
|
), |
|
|
conv1x1(channels, channels, stride=1, bias=False) if groups > 1 else nn.Identity(), |
|
|
Conv2dLayerNorm(channels), |
|
|
nn.GELU(), |
|
|
)) |
|
|
|
|
|
|
|
|
self.norm_attn = Conv2dLayerNorm(channels) |
|
|
self.pos_embed = nn.Parameter(torch.randn(1, self.num_scales + 1, channels, 1, 1) / channels ** 0.5) |
|
|
self.to_q = conv1x1(channels, channels, stride=1, bias=False) |
|
|
self.to_k = conv1x1(channels, channels, stride=1, bias=False) |
|
|
self.to_v = conv1x1(channels, channels, stride=1, bias=False) |
|
|
|
|
|
self.scale = (channels // heads) ** -0.5 |
|
|
|
|
|
self.attend = nn.Softmax(dim=-1) |
|
|
|
|
|
self.to_out = conv1x1(channels, channels, stride=1) |
|
|
|
|
|
|
|
|
self.norm_mlp = Conv2dLayerNorm(channels) |
|
|
self.mlp = nn.Sequential( |
|
|
conv1x1(channels, channels * mlp_ratio, stride=1), |
|
|
nn.GELU(), |
|
|
conv1x1(channels * mlp_ratio, channels, stride=1), |
|
|
) |
|
|
|
|
|
self.apply(_init_weights) |
|
|
|
|
|
def _forward_attn(self, x: Tensor) -> Tensor: |
|
|
assert len(x.shape) == 4, f"Expected input to have shape (B, C, H, W), but got {x.shape}" |
|
|
x = [self.scale_0(x)] + [getattr(self, f"conv_{scale}")(x) for scale in self.scales] |
|
|
|
|
|
x = torch.stack(x, dim=1) |
|
|
x = torch.cat([x.mean(dim=1, keepdim=True), x], dim=1) |
|
|
x = x + self.pos_embed |
|
|
|
|
|
x = rearrange(x, "B S C H W -> (B S) C H W") |
|
|
x = self.norm_attn(x) |
|
|
x = rearrange(x, "(B S) C H W -> B S C H W", S=self.num_scales + 1) |
|
|
|
|
|
q = self.to_q(x[:, 0]) |
|
|
k = self.to_k(rearrange(x, "B S C H W -> (B S) C H W")) |
|
|
v = self.to_v(rearrange(x, "B S C H W -> (B S) C H W")) |
|
|
|
|
|
q = rearrange(q, "B (h d) H W -> B h H W 1 d", h=self.heads) |
|
|
k = rearrange(k, "(B S) (h d) H W -> B h H W S d", S=self.num_scales + 1, h=self.heads) |
|
|
v = rearrange(v, "(B S) (h d) H W -> B h H W S d", S=self.num_scales + 1, h=self.heads) |
|
|
|
|
|
attn = q @ k.transpose(-2, -1) * self.scale |
|
|
attn = self.attend(attn) |
|
|
out = attn @ v |
|
|
|
|
|
out = rearrange(out, "B h H W 1 d -> B (h d) H W") |
|
|
|
|
|
out = self.to_out(out) |
|
|
return out |
|
|
|
|
|
def _forward_mlp(self, x: Tensor) -> Tensor: |
|
|
assert len(x.shape) == 4, f"Expected input to have shape (B, C, H, W), but got {x.shape}" |
|
|
x = self.norm_mlp(x) |
|
|
x = self.mlp(x) |
|
|
return x |
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
x = x + self._forward_attn(x) |
|
|
x = x + self._forward_mlp(x) |
|
|
return x |
|
|
|