|
|
import torch |
|
|
from torch import nn, Tensor |
|
|
import torch.nn.functional as F |
|
|
from einops import rearrange |
|
|
from einops.layers.torch import Rearrange |
|
|
|
|
|
from typing import Callable, Optional, Sequence, Tuple, Union, List, List |
|
|
import warnings |
|
|
|
|
|
from .utils import _init_weights, _make_ntuple, _log_api_usage_once |
|
|
|
|
|
|
|
|
def conv3x3( |
|
|
in_channels: int, |
|
|
out_channels: int, |
|
|
stride: int = 1, |
|
|
groups: int = 1, |
|
|
dilation: int = 1, |
|
|
bias: bool = True, |
|
|
) -> nn.Conv2d: |
|
|
"""3x3 convolution with padding""" |
|
|
conv = nn.Conv2d( |
|
|
in_channels, |
|
|
out_channels, |
|
|
kernel_size=3, |
|
|
stride=stride, |
|
|
padding=dilation, |
|
|
groups=groups, |
|
|
bias=bias, |
|
|
dilation=dilation, |
|
|
) |
|
|
conv.apply(_init_weights) |
|
|
return conv |
|
|
|
|
|
|
|
|
def conv1x1( |
|
|
in_channels: int, |
|
|
out_channels: int, |
|
|
stride: int = 1, |
|
|
bias: bool = True, |
|
|
) -> nn.Conv2d: |
|
|
"""1x1 convolution""" |
|
|
conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=bias) |
|
|
conv.apply(_init_weights) |
|
|
return conv |
|
|
|
|
|
|
|
|
class DepthSeparableConv2d(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int, |
|
|
out_channels: int, |
|
|
kernel_size: int, |
|
|
stride: int = 1, |
|
|
padding: int = 0, |
|
|
dilation: int = 1, |
|
|
bias: bool = True, |
|
|
padding_mode: str = "zeros", |
|
|
) -> None: |
|
|
super().__init__() |
|
|
|
|
|
self.depthwise = nn.Conv2d( |
|
|
in_channels=in_channels, |
|
|
out_channels=in_channels, |
|
|
kernel_size=kernel_size, |
|
|
stride=stride, |
|
|
padding=padding, |
|
|
dilation=dilation, |
|
|
groups=in_channels, |
|
|
bias=bias, |
|
|
padding_mode=padding_mode |
|
|
) |
|
|
|
|
|
self.pointwise = nn.Conv2d( |
|
|
in_channels=in_channels, |
|
|
out_channels=out_channels, |
|
|
kernel_size=1, |
|
|
stride=1, |
|
|
padding=0, |
|
|
dilation=1, |
|
|
groups=1, |
|
|
bias=bias, |
|
|
padding_mode=padding_mode |
|
|
) |
|
|
self.apply(_init_weights) |
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
return self.pointwise(self.depthwise(x)) |
|
|
|
|
|
|
|
|
class SEBlock(nn.Module): |
|
|
def __init__(self, channels: int, reduction: int = 16): |
|
|
super().__init__() |
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
|
self.fc = nn.Sequential( |
|
|
nn.Linear(channels, channels // reduction, bias=False), |
|
|
nn.ReLU(inplace=True), |
|
|
nn.Linear(channels // reduction, channels, bias=False), |
|
|
nn.Sigmoid() |
|
|
) |
|
|
self.apply(_init_weights) |
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
B, C, _, _ = x.shape |
|
|
y = self.avg_pool(x).view(B, C) |
|
|
y = self.fc(y).view(B, C, 1, 1) |
|
|
return x * y |
|
|
|
|
|
|
|
|
class BasicBlock(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int, |
|
|
out_channels: int, |
|
|
norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, |
|
|
activation: nn.Module = nn.ReLU(inplace=True), |
|
|
groups: int = 1, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
assert isinstance(groups, int) and groups > 0, f"Expected groups to be a positive integer, but got {groups}" |
|
|
assert in_channels % groups == 0, f"Expected in_channels to be divisible by groups, but got {in_channels} % {groups}" |
|
|
assert out_channels % groups == 0, f"Expected out_channels to be divisible by groups, but got {out_channels} % {groups}" |
|
|
self.grouped_conv = groups > 1 |
|
|
self.conv1 = conv3x3( |
|
|
in_channels=in_channels, |
|
|
out_channels=out_channels, |
|
|
stride=1, |
|
|
bias=not norm_layer, |
|
|
groups=groups, |
|
|
) |
|
|
if self.grouped_conv: |
|
|
self.conv1_1x1 = conv1x1(out_channels, out_channels, stride=1, bias=not norm_layer) |
|
|
|
|
|
self.norm1 = norm_layer(out_channels) if norm_layer else nn.Identity() |
|
|
self.act1 = activation |
|
|
|
|
|
self.conv2 = conv3x3( |
|
|
in_channels=out_channels, |
|
|
out_channels=out_channels, |
|
|
stride=1, |
|
|
bias=not norm_layer, |
|
|
groups=groups, |
|
|
) |
|
|
if self.grouped_conv: |
|
|
self.conv2_1x1 = conv1x1(out_channels, out_channels, stride=1, bias=not norm_layer) |
|
|
|
|
|
self.norm2 = norm_layer(out_channels) if norm_layer else nn.Identity() |
|
|
self.act2 = activation |
|
|
|
|
|
if in_channels != out_channels: |
|
|
self.downsample = nn.Sequential( |
|
|
conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), |
|
|
norm_layer(out_channels) if norm_layer else nn.Identity(), |
|
|
) |
|
|
else: |
|
|
self.downsample = nn.Identity() |
|
|
|
|
|
self.apply(_init_weights) |
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
identity = x |
|
|
|
|
|
out = self.conv1(x) |
|
|
out = self.conv1_1x1(out) if self.grouped_conv else out |
|
|
out = self.norm1(out) |
|
|
out = self.act1(out) |
|
|
|
|
|
out = self.conv2(out) |
|
|
out = self.conv2_1x1(out) if self.grouped_conv else out |
|
|
out = self.norm2(out) |
|
|
|
|
|
out += self.downsample(identity) |
|
|
out = self.act2(out) |
|
|
|
|
|
return out |
|
|
|
|
|
|
|
|
class LightBasicBlock(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int, |
|
|
out_channels: int, |
|
|
norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, |
|
|
activation: nn.Module = nn.ReLU(inplace=True), |
|
|
) -> None: |
|
|
super().__init__() |
|
|
self.conv1 = DepthSeparableConv2d( |
|
|
in_channels=in_channels, |
|
|
out_channels=out_channels, |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1, |
|
|
bias=not norm_layer, |
|
|
) |
|
|
self.norm1 = norm_layer(out_channels) if norm_layer else nn.Identity() |
|
|
self.act1 = activation |
|
|
|
|
|
self.conv2 = DepthSeparableConv2d( |
|
|
in_channels=out_channels, |
|
|
out_channels=out_channels, |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1, |
|
|
bias=not norm_layer, |
|
|
) |
|
|
self.norm2 = norm_layer(out_channels) if norm_layer else nn.Identity() |
|
|
self.act2 = activation |
|
|
|
|
|
if in_channels != out_channels: |
|
|
self.downsample = nn.Sequential( |
|
|
conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), |
|
|
norm_layer(out_channels) if norm_layer else nn.Identity(), |
|
|
) |
|
|
else: |
|
|
self.downsample = nn.Identity() |
|
|
|
|
|
self.apply(_init_weights) |
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
identity = x |
|
|
|
|
|
out = self.conv1(x) |
|
|
out = self.norm1(out) |
|
|
out = self.act1(out) |
|
|
|
|
|
out = self.conv2(out) |
|
|
out = self.norm2(out) |
|
|
|
|
|
out += self.downsample(identity) |
|
|
out = self.act2(out) |
|
|
|
|
|
return out |
|
|
|
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int, |
|
|
out_channels: int, |
|
|
norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, |
|
|
activation: nn.Module = nn.ReLU(inplace=True), |
|
|
groups: int = 1, |
|
|
base_width: int = 64, |
|
|
expansion: float = 2.0, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
assert isinstance(groups, int) and groups > 0, f"Expected groups to be a positive integer, but got {groups}" |
|
|
assert expansion > 0, f"Expected expansion to be greater than 0, but got {expansion}" |
|
|
assert base_width > 0, f"Expected base_width to be greater than 0, but got {base_width}" |
|
|
bottleneck_channels = int(in_channels * (base_width / 64.0) * expansion) |
|
|
assert bottleneck_channels % groups == 0, f"Expected bottleneck_channels to be divisible by groups, but got {bottleneck_channels} % {groups}" |
|
|
self.grouped_conv = groups > 1 |
|
|
self.expansion, self.base_width = expansion, base_width |
|
|
|
|
|
self.conv_in = conv1x1(in_channels, bottleneck_channels, stride=1, bias=not norm_layer) |
|
|
self.norm_in = norm_layer(bottleneck_channels) |
|
|
self.act_in = activation |
|
|
|
|
|
self.se_in = SEBlock(bottleneck_channels) if bottleneck_channels > in_channels else nn.Identity() |
|
|
|
|
|
self.conv_block_1 = nn.Sequential( |
|
|
conv3x3( |
|
|
in_channels=bottleneck_channels, |
|
|
out_channels=bottleneck_channels, |
|
|
stride=1, |
|
|
groups=groups, |
|
|
bias=not norm_layer |
|
|
), |
|
|
conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer) if groups > 1 else nn.Identity(), |
|
|
norm_layer(bottleneck_channels) if norm_layer else nn.Identity(), |
|
|
activation, |
|
|
) |
|
|
|
|
|
self.conv_block_2 = nn.Sequential( |
|
|
conv3x3( |
|
|
in_channels=bottleneck_channels, |
|
|
out_channels=bottleneck_channels, |
|
|
stride=1, |
|
|
groups=groups, |
|
|
bias=not norm_layer |
|
|
), |
|
|
conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer) if groups > 1 else nn.Identity(), |
|
|
norm_layer(bottleneck_channels) if norm_layer else nn.Identity(), |
|
|
activation, |
|
|
) |
|
|
|
|
|
self.conv_out = conv1x1(bottleneck_channels, out_channels, stride=1, bias=not norm_layer) |
|
|
self.norm_out = norm_layer(out_channels) |
|
|
self.act_out = activation |
|
|
self.se_out = SEBlock(out_channels) if out_channels > bottleneck_channels else nn.Identity() |
|
|
|
|
|
if in_channels != out_channels: |
|
|
self.downsample = nn.Sequential( |
|
|
conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), |
|
|
norm_layer(out_channels) if norm_layer else nn.Identity(), |
|
|
) |
|
|
else: |
|
|
self.downsample = nn.Identity() |
|
|
|
|
|
self.apply(_init_weights) |
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
identity = x |
|
|
|
|
|
|
|
|
out = self.conv_in(x) |
|
|
out = self.norm_in(out) |
|
|
out = self.act_in(out) |
|
|
out = self.se_in(out) |
|
|
|
|
|
|
|
|
out = self.conv_block_1(out) |
|
|
out = self.conv_block_2(out) |
|
|
|
|
|
|
|
|
out = self.conv_out(out) |
|
|
out = self.norm_out(out) |
|
|
out = self.se_out(out) |
|
|
|
|
|
out += self.downsample(identity) |
|
|
out = self.act_out(out) |
|
|
return out |
|
|
|
|
|
|
|
|
class ConvASPP(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int, |
|
|
out_channels: int, |
|
|
dilations: List[int] = [1, 2, 4], |
|
|
norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, |
|
|
activation: nn.Module = nn.ReLU(inplace=True), |
|
|
groups: int = 1, |
|
|
base_width: int = 64, |
|
|
expansion: float = 2.0, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
assert isinstance(groups, int) and groups > 0, f"Expected groups to be a positive integer, but got {groups}" |
|
|
assert expansion > 0, f"Expected expansion to be greater than 0, but got {expansion}" |
|
|
assert base_width > 0, f"Expected base_width to be greater than 0, but got {base_width}" |
|
|
bottleneck_channels = int(in_channels * (base_width / 64.0) * expansion) |
|
|
assert bottleneck_channels % groups == 0, f"Expected bottleneck_channels to be divisible by groups, but got {bottleneck_channels} % {groups}" |
|
|
self.expansion, self.base_width = expansion, base_width |
|
|
|
|
|
self.conv_in = conv1x1(in_channels, bottleneck_channels, stride=1, bias=not norm_layer) |
|
|
self.norm_in = norm_layer(bottleneck_channels) |
|
|
self.act_in = activation |
|
|
|
|
|
conv_blocks = [nn.Sequential( |
|
|
conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer), |
|
|
norm_layer(bottleneck_channels), |
|
|
activation |
|
|
)] |
|
|
|
|
|
for dilation in dilations: |
|
|
conv_blocks.append(nn.Sequential( |
|
|
conv3x3( |
|
|
in_channels=bottleneck_channels, |
|
|
out_channels=bottleneck_channels, |
|
|
stride=1, |
|
|
groups=groups, |
|
|
dilation=dilation, |
|
|
bias=not norm_layer |
|
|
), |
|
|
conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer) if groups > 1 else nn.Identity(), |
|
|
norm_layer(bottleneck_channels) if norm_layer else nn.Identity(), |
|
|
activation |
|
|
)) |
|
|
|
|
|
self.convs = nn.ModuleList(conv_blocks) |
|
|
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
|
self.conv_avg = conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer) |
|
|
self.norm_avg = norm_layer(bottleneck_channels) |
|
|
self.act_avg = activation |
|
|
|
|
|
self.se = SEBlock(bottleneck_channels * (len(dilations) + 2)) |
|
|
|
|
|
self.conv_out = conv1x1(bottleneck_channels * (len(dilations) + 2), out_channels, stride=1, bias=not norm_layer) |
|
|
self.norm_out = norm_layer(out_channels) |
|
|
self.act_out = activation |
|
|
|
|
|
if in_channels != out_channels: |
|
|
self.downsample = nn.Sequential( |
|
|
conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), |
|
|
norm_layer(out_channels) if norm_layer else nn.Identity(), |
|
|
) |
|
|
else: |
|
|
self.downsample = nn.Identity() |
|
|
|
|
|
self.apply(_init_weights) |
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
height, width = x.shape[-2:] |
|
|
identity = x |
|
|
|
|
|
|
|
|
out = self.conv_in(x) |
|
|
out = self.norm_in(out) |
|
|
out = self.act_in(out) |
|
|
|
|
|
outs = [] |
|
|
for conv in self.convs: |
|
|
outs.append(conv(out)) |
|
|
|
|
|
avg = self.avgpool(out) |
|
|
avg = self.conv_avg(avg) |
|
|
avg = self.norm_avg(avg) |
|
|
avg = self.act_avg(avg) |
|
|
avg = avg.repeat(1, 1, height, width) |
|
|
|
|
|
outs = torch.cat([*outs, avg], dim=1) |
|
|
outs = self.se(outs) |
|
|
|
|
|
|
|
|
outs = self.conv_out(outs) |
|
|
outs = self.norm_out(outs) |
|
|
|
|
|
outs += self.downsample(identity) |
|
|
outs = self.act_out(outs) |
|
|
return outs |
|
|
|
|
|
|
|
|
class ViTBlock(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
embed_dim: int, |
|
|
num_heads: int = 8, |
|
|
dropout: float = 0.0, |
|
|
mlp_ratio: float = 4.0, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
assert embed_dim % num_heads == 0, f"Embedding dimension {embed_dim} should be divisible by number of heads {num_heads}" |
|
|
self.embed_dim, self.num_heads = embed_dim, num_heads |
|
|
self.dropout, self.mlp_ratio = dropout, mlp_ratio |
|
|
|
|
|
self.norm1 = nn.LayerNorm(embed_dim) |
|
|
self.attn = nn.MultiheadAttention( |
|
|
embed_dim=embed_dim, |
|
|
num_heads=num_heads, |
|
|
dropout=dropout, |
|
|
batch_first=True |
|
|
) |
|
|
|
|
|
self.norm2 = nn.LayerNorm(embed_dim) |
|
|
self.mlp = nn.Sequential( |
|
|
nn.Linear(embed_dim, int(embed_dim * mlp_ratio)), |
|
|
nn.GELU(), |
|
|
nn.Dropout(dropout) if dropout > 0 else nn.Identity(), |
|
|
nn.Linear(int(embed_dim * mlp_ratio), embed_dim), |
|
|
nn.Dropout(dropout) if dropout > 0 else nn.Identity() |
|
|
) |
|
|
self.apply(_init_weights) |
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
assert len(x.shape) == 3, f"Expected input to have shape (B, N, C), but got {x.shape}" |
|
|
x = x + self.attn(self.norm1(x)) |
|
|
x = x + self.mlp(self.norm2(x)) |
|
|
return x |
|
|
|
|
|
|
|
|
class Conv2dLayerNorm(nn.Sequential): |
|
|
""" |
|
|
Layer normalization applied in a convolutional fashion. |
|
|
""" |
|
|
def __init__(self, dim: int) -> None: |
|
|
super().__init__( |
|
|
Rearrange("B C H W -> B H W C"), |
|
|
nn.LayerNorm(dim), |
|
|
Rearrange("B H W C -> B C H W") |
|
|
) |
|
|
self.apply(_init_weights) |
|
|
|
|
|
|
|
|
class CvTAttention(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
embed_dim: int, |
|
|
num_heads: int = 8, |
|
|
dropout: float = 0.0, |
|
|
q_stride: int = 1, |
|
|
kv_stride: int = 1, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
assert embed_dim % num_heads == 0, f"Embedding dimension {embed_dim} should be divisible by number of heads {num_heads}" |
|
|
self.embed_dim, self.num_heads, self.dim_head = embed_dim, num_heads, embed_dim // num_heads |
|
|
self.scale = self.dim_head ** -0.5 |
|
|
self.q_stride, self.kv_stride = q_stride, kv_stride |
|
|
|
|
|
self.attend = nn.Softmax(dim=-1) |
|
|
self.dropout = nn.Dropout(dropout) |
|
|
|
|
|
self.to_q = DepthSeparableConv2d( |
|
|
in_channels=embed_dim, |
|
|
out_channels=embed_dim, |
|
|
kernel_size=3, |
|
|
stride=q_stride, |
|
|
padding=1, |
|
|
bias=False |
|
|
) |
|
|
self.to_k = DepthSeparableConv2d( |
|
|
in_channels=embed_dim, |
|
|
out_channels=embed_dim, |
|
|
kernel_size=3, |
|
|
stride=kv_stride, |
|
|
padding=1, |
|
|
bias=False |
|
|
) |
|
|
self.to_v = DepthSeparableConv2d( |
|
|
in_channels=embed_dim, |
|
|
out_channels=embed_dim, |
|
|
kernel_size=3, |
|
|
stride=kv_stride, |
|
|
padding=1, |
|
|
bias=False |
|
|
) |
|
|
|
|
|
self.to_out = nn.Sequential( |
|
|
conv1x1(embed_dim, embed_dim, stride=1), |
|
|
nn.Dropout(dropout) if dropout > 0 else nn.Identity() |
|
|
) |
|
|
|
|
|
self.apply(_init_weights) |
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
assert len(x.shape) == 4, f"Expected input to have shape (B, C, H, W), but got {x.shape}" |
|
|
assert x.shape[1] == self.embed_dim, f"Expected input to have embedding dimension {self.embed_dim}, but got {x.shape[1]}" |
|
|
|
|
|
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x) |
|
|
B, _, H, W = q.shape |
|
|
q, k, v = map(lambda t: rearrange(t, "B (num_heads head_dim) H W -> (B num_heads) (H W) head_dim", num_heads=self.num_heads), (q, k, v)) |
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
|
attn = self.attend(attn) |
|
|
attn = self.dropout(attn) |
|
|
|
|
|
out = attn @ v |
|
|
out = rearrange(out, "(B num_heads) (H W) head_dim -> B (num_heads head_dim) H W", B=B, H=H, W=W, num_heads=self.num_heads) |
|
|
out = self.to_out(out) |
|
|
|
|
|
return out |
|
|
|
|
|
|
|
|
class CvTBlock(nn.Module): |
|
|
""" |
|
|
Implement convolutional vision transformer block. |
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
embed_dim: int, |
|
|
num_heads: int = 8, |
|
|
dropout: float = 0.0, |
|
|
mlp_ratio: float = 4.0, |
|
|
q_stride: int = 1, |
|
|
kv_stride: int = 1, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
assert embed_dim % num_heads == 0, f"Embedding dimension {embed_dim} should be divisible by number of heads {num_heads}." |
|
|
self.embed_dim, self.num_heads = embed_dim, num_heads |
|
|
|
|
|
self.norm1 = Conv2dLayerNorm(embed_dim) |
|
|
self.attn = CvTAttention(embed_dim, num_heads, dropout, q_stride, kv_stride) |
|
|
|
|
|
self.pool = nn.AvgPool2d(kernel_size=q_stride, stride=q_stride) if q_stride > 1 else nn.Identity() |
|
|
|
|
|
self.norm2 = Conv2dLayerNorm(embed_dim) |
|
|
self.mlp = nn.Sequential( |
|
|
nn.Conv2d(embed_dim, int(embed_dim * mlp_ratio), kernel_size=1), |
|
|
nn.GELU(), |
|
|
nn.Dropout(dropout) if dropout > 0 else nn.Identity(), |
|
|
nn.Conv2d(int(embed_dim * mlp_ratio), embed_dim, kernel_size=1), |
|
|
nn.Dropout(dropout) if dropout > 0 else nn.Identity() |
|
|
) |
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
x = self.pool(x) + self.attn(self.norm1(x)) |
|
|
x = x + self.mlp(self.norm2(x)) |
|
|
return x |
|
|
|
|
|
|
|
|
class ConvAdapter(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int, |
|
|
bottleneck_channels: int = 16, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
assert in_channels > 0, f"Expected input_channels to be greater than 0, but got {in_channels}" |
|
|
assert bottleneck_channels > 0, f"Expected bottleneck_channels to be greater than 0, but got {bottleneck_channels}" |
|
|
|
|
|
self.adapter = nn.Sequential( |
|
|
nn.Conv2d(in_channels, bottleneck_channels, kernel_size=1), |
|
|
nn.GELU(), |
|
|
nn.Conv2d(bottleneck_channels, in_channels, kernel_size=1), |
|
|
) |
|
|
nn.init.zeros_(self.adapter[2].weight) |
|
|
nn.init.zeros_(self.adapter[2].bias) |
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
assert len(x.shape) == 4, f"Expected input to have shape (B, C, H, W), but got {x.shape}" |
|
|
return x + self.adapter(x) |
|
|
|
|
|
|
|
|
class ViTAdapter(nn.Module): |
|
|
def __init__(self, input_dim, bottleneck_dim): |
|
|
super().__init__() |
|
|
self.adapter = nn.Sequential( |
|
|
nn.Linear(input_dim, bottleneck_dim), |
|
|
nn.GELU(), |
|
|
nn.Linear(bottleneck_dim, input_dim) |
|
|
) |
|
|
nn.init.zeros_(self.adapter[2].weight) |
|
|
nn.init.zeros_(self.adapter[2].bias) |
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
assert len(x.shape) == 3, f"Expected input to have shape (B, N, C), but got {x.shape}" |
|
|
return x + self.adapter(x) |
|
|
|