import torchvision import torch from torchvision import datasets from torchvision import transforms import os from deeprobust.image.attack.pgd import PGD from deeprobust.image.config import attack_params val_root = '/mnt/home/liyaxin1/Documents/data/ImageNet' #Imagenet_data = torchvision.datasets.ImageNet(val_root, split = 'val') test_loader = torch.utils.data.DataLoader(datasets.ImageFolder('~/Documents/data/ImageNet/val', transforms.Compose([ transforms.Scale(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])), batch_size=1, shuffle=False) #import torchvision.models as models #model = models.resnet50(pretrained=True).to('cuda') import pretrainedmodels model = pretrainedmodels.resnet50(num_classes=1000, pretrained='imagenet').to('cuda') for i, (input, y) in enumerate(test_loader): import ipdb ipdb.set_trace() input, y = input.to('cuda'), y.to('cuda') pred = model(input) print(pred.argmax(dim=1, keepdim = True)) adversary = PGD(model) AdvExArray = adversary.generate(input, y, **attack_params['PGD_CIFAR10']).float()