Predictor: Model: classpath: model:Unet_TS_CT Unet_TS_CT: outputs_criterions: None channels: - 1 - 32 - 64 - 128 - 256 - 320 Dataset: groups_src: Volume_0: groups_dest: Volume: transforms: TensorCast: dtype: float32 inverse: false Canonical: inverse: true ResampleToResolution: spacing: - 3 - 3 - 3 inverse: true Standardize: lazy: false mean: None std: None mask: None inverse: false Padding: padding: - 32 - 32 - 32 - 32 - 32 - 32 mode: constant inverse: true patch_transforms: None is_input: true augmentations: None Patch: patch_size: - 96 - 128 - 160 overlap: 32 mask: None pad_value: 0 extend_slice: 0 subset: None filter: None dataset_filenames: - ./Dataset/:mha use_cache: false batch_size: 1 outputs_dataset: Head:Softmax: OutputDataset: name_class: OutSameAsGroupDataset before_reduction_transforms: Softmax: dim: 0 Argmax: dim: 0 TensorCast: dtype: uint8 inverse: true after_reduction_transforms: Sum: dim: 0 final_transforms: None dataset_filename: Output:mha group: Output same_as_group: Volume_0:Volume patch_combine: Cosinus inverse_transform: true reduction: Mean train_name: TotalSegmentator manual_seed: 32 gpu_checkpoints: None images_log: None combine: Concat autocast: false data_log: None