RiccardoDav commited on
Commit
d657c69
·
verified ·
1 Parent(s): 59f6f37

Dear TinyLlama,
We are a group of researchers investigating the usefulness of sharing AIBOMs (Artificial Intelligence Bill of Materials) to document AI models and to improve transparency in AI model supply chains. AIBOMs are machine-readable, structured inventories of components—such as datasets and models—used in the development of AI-powered systems.

We would like to emphasize that we have no financial or competing interests related to AIBOMs. Our sole interest is to advance the collective understanding of AIBOMs within both academia and industry. As part of this effort, we are contributing to randomly selected open and popular models on Hugging Face (like yours) and are happy to offer support to you and the maintainers of your model if needed.

Based on your model card (and some configuration information available in Hugging Face), we generated the AIBOM according to the CyclonDX (v1.6) standard (see https://cyclonedx.org/docs/1.6/json/). This AIBOM is generated as a JSON file by using the following open-source supporting tool: https://github.com/MSR4SBOM/ALOHA (technical details are available in the research paper: https://github.com/MSR4SBOM/ALOHA/blob/main/ALOHA.pdf). This tool is freely available online and can be downloaded and used at your own convenience. We are also happy to assist you directly if you need help generating or reviewing an AIBOM for your model.

The JSON file in this pull request is your AIBOM (see https://github.com/MSR4SBOM/ALOHA/blob/main/documentation.json for details on its structure). Clearly, the submitted AIBOM matches the current model information, yet it can be easily regenerated when the model evolves, using the aforementioned AIBOM generation tool.

We understand that initiatives like ours may raise questions, especially in open communities like Hugging Face. Therefore, we would like to further remark that our interest in AIBOMs is only to enhance the body of knowledge on AIBOMs and to make this easy and low-friction for maintainers of AI models and developers of AI-powered systems.

We open this pull request containing an AIBOM of your AI model, and hope it will be considered. We would also like to hear your opinion on the usefulness (or not) of AIBOM by answering a 3-minute anonymous survey: https://forms.gle/WGffSQD5dLoWttEe7.

Thanks in advance, and regards,
Riccardo D’Avino, Fatima Ahmed, Sabato Nocera, Simone Romano, Giuseppe Scanniello (University of Salerno, Italy),
Massimiliano Di Penta (University of Sannio, Italy),
The MSR4SBOM team

TinyLlama_TinyLlama-1.1B-intermediate-step-1431k-3T.json ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bomFormat": "CycloneDX",
3
+ "specVersion": "1.6",
4
+ "serialNumber": "urn:uuid:84dcbcb5-128b-48fa-ac83-877bc829a20f",
5
+ "version": 1,
6
+ "metadata": {
7
+ "timestamp": "2025-10-23T16:24:20.040807+00:00",
8
+ "component": {
9
+ "type": "machine-learning-model",
10
+ "bom-ref": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T-18d39ff6-e8f5-527a-9461-dd57145354aa",
11
+ "licenses": [
12
+ {
13
+ "license": {
14
+ "id": "Apache-2.0",
15
+ "url": "https://spdx.org/licenses/Apache-2.0.html"
16
+ }
17
+ }
18
+ ],
19
+ "externalReferences": [
20
+ {
21
+ "url": "https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
22
+ "type": "documentation"
23
+ }
24
+ ],
25
+ "modelCard": {
26
+ "modelParameters": {
27
+ "datasets": [
28
+ {
29
+ "ref": "cerebras/SlimPajama-627B-b36a2f54-050e-55dd-bb65-57b90579dbe6"
30
+ },
31
+ {
32
+ "ref": "bigcode/starcoderdata-abfd2d2a-390d-56b4-ad9c-c532362d5827"
33
+ }
34
+ ],
35
+ "task": "text-generation",
36
+ "architectureFamily": "llama",
37
+ "modelArchitecture": "LlamaForCausalLM"
38
+ },
39
+ "properties": [
40
+ {
41
+ "name": "library_name",
42
+ "value": "transformers"
43
+ }
44
+ ],
45
+ "quantitativeAnalysis": {
46
+ "performanceMetrics": [
47
+ {
48
+ "slice": "dataset: ai2_arc, split: test, config: ARC-Challenge",
49
+ "type": "acc_norm",
50
+ "value": 33.87
51
+ },
52
+ {
53
+ "slice": "dataset: hellaswag, split: validation",
54
+ "type": "acc_norm",
55
+ "value": 60.31
56
+ },
57
+ {
58
+ "slice": "dataset: cais/mmlu, split: test, config: all",
59
+ "type": "acc",
60
+ "value": 26.04
61
+ },
62
+ {
63
+ "slice": "dataset: truthful_qa, split: validation, config: multiple_choice",
64
+ "type": "mc2",
65
+ "value": 37.32
66
+ },
67
+ {
68
+ "slice": "dataset: winogrande, split: validation, config: winogrande_xl",
69
+ "type": "acc",
70
+ "value": 59.51
71
+ },
72
+ {
73
+ "slice": "dataset: gsm8k, split: test, config: main",
74
+ "type": "acc",
75
+ "value": 1.44
76
+ }
77
+ ]
78
+ }
79
+ },
80
+ "name": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
81
+ "authors": [
82
+ {
83
+ "name": "TinyLlama"
84
+ }
85
+ ],
86
+ "tags": [
87
+ "transformers",
88
+ "pytorch",
89
+ "safetensors",
90
+ "llama",
91
+ "text-generation",
92
+ "en",
93
+ "dataset:cerebras/SlimPajama-627B",
94
+ "dataset:bigcode/starcoderdata",
95
+ "license:apache-2.0",
96
+ "model-index",
97
+ "autotrain_compatible",
98
+ "text-generation-inference",
99
+ "endpoints_compatible",
100
+ "region:us"
101
+ ]
102
+ }
103
+ },
104
+ "components": [
105
+ {
106
+ "type": "data",
107
+ "bom-ref": "cerebras/SlimPajama-627B-b36a2f54-050e-55dd-bb65-57b90579dbe6",
108
+ "name": "cerebras/SlimPajama-627B",
109
+ "data": [
110
+ {
111
+ "type": "dataset",
112
+ "bom-ref": "cerebras/SlimPajama-627B-b36a2f54-050e-55dd-bb65-57b90579dbe6",
113
+ "name": "cerebras/SlimPajama-627B",
114
+ "contents": {
115
+ "url": "https://huggingface.co/datasets/cerebras/SlimPajama-627B",
116
+ "properties": [
117
+ {
118
+ "name": "task_categories",
119
+ "value": "text-generation"
120
+ },
121
+ {
122
+ "name": "language",
123
+ "value": "en"
124
+ },
125
+ {
126
+ "name": "pretty_name",
127
+ "value": "SlimPajama-627B"
128
+ }
129
+ ]
130
+ },
131
+ "description": "The dataset consists of 59166 jsonl files and is ~895GB compressed. It is a cleaned and deduplicated version of Together's RedPajama. \nCheck out our blog post explaining our methods, our code on GitHub, and join the discussion on the Cerebras Discord.\n\n\t\n\t\t\n\t\n\t\n\t\tGetting Started\n\t\n\nYou can download the dataset using Hugging Face datasets:\nfrom datasets import load_dataset\nds = load_dataset(\"cerebras/SlimPajama-627B\")\n\n\n\t\n\t\n\t\n\t\tBackground\n\t\n\nToday we are releasing SlimPajama \u2013 the largest\u2026 See the full description on the dataset page: https://huggingface.co/datasets/cerebras/SlimPajama-627B.",
132
+ "governance": {
133
+ "owners": [
134
+ {
135
+ "organization": {
136
+ "name": "cerebras",
137
+ "url": "https://huggingface.co/cerebras"
138
+ }
139
+ }
140
+ ]
141
+ }
142
+ }
143
+ ]
144
+ },
145
+ {
146
+ "type": "data",
147
+ "bom-ref": "bigcode/starcoderdata-abfd2d2a-390d-56b4-ad9c-c532362d5827",
148
+ "name": "bigcode/starcoderdata",
149
+ "data": [
150
+ {
151
+ "type": "dataset",
152
+ "bom-ref": "bigcode/starcoderdata-abfd2d2a-390d-56b4-ad9c-c532362d5827",
153
+ "name": "bigcode/starcoderdata",
154
+ "contents": {
155
+ "url": "https://huggingface.co/datasets/bigcode/starcoderdata",
156
+ "properties": [
157
+ {
158
+ "name": "task_categories",
159
+ "value": "text-generation"
160
+ },
161
+ {
162
+ "name": "language",
163
+ "value": "code"
164
+ },
165
+ {
166
+ "name": "size_categories",
167
+ "value": "unknown"
168
+ },
169
+ {
170
+ "name": "annotations_creators",
171
+ "value": ""
172
+ },
173
+ {
174
+ "name": "language_creators",
175
+ "value": "crowdsourced, expert-generated"
176
+ },
177
+ {
178
+ "name": "pretty_name",
179
+ "value": "The-Stack"
180
+ },
181
+ {
182
+ "name": "source_datasets",
183
+ "value": ""
184
+ },
185
+ {
186
+ "name": "license",
187
+ "value": "other"
188
+ }
189
+ ]
190
+ },
191
+ "description": "\n\t\n\t\t\n\t\tStarCoder Training Dataset\n\t\n\n\n\t\n\t\t\n\t\tDataset description\n\t\n\nThis is the dataset used for training StarCoder and StarCoderBase. It contains 783GB of code in 86 programming languages, and includes 54GB GitHub Issues + 13GB Jupyter notebooks in scripts and text-code pairs,\nand 32GB of GitHub commits, which is approximately 250 Billion tokens.\n\n\t\n\t\t\n\t\n\t\n\t\tDataset creation\n\t\n\nThe creation and filtering of The Stack is explained in the original dataset, we additionally decontaminate and\u2026 See the full description on the dataset page: https://huggingface.co/datasets/bigcode/starcoderdata.",
192
+ "governance": {
193
+ "owners": [
194
+ {
195
+ "organization": {
196
+ "name": "bigcode",
197
+ "url": "https://huggingface.co/bigcode"
198
+ }
199
+ }
200
+ ]
201
+ }
202
+ }
203
+ ]
204
+ }
205
+ ]
206
+ }