Commit
·
a95e066
1
Parent(s):
6d0ec1a
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Model Card for Respeecher/ukrainian-data2vec
|
| 2 |
+
|
| 3 |
+
This model can be used as Feature Extractor model for Ukrainian language audio data
|
| 4 |
+
|
| 5 |
+
It can also be used as Backbone for downstream tasks, like ASR, Audio Classification, etc.
|
| 6 |
+
|
| 7 |
+
### How to Get Started with the Model
|
| 8 |
+
|
| 9 |
+
```python
|
| 10 |
+
from transformers import AutoProcessor, Data2VecAudioModel
|
| 11 |
+
import torch
|
| 12 |
+
from datasets import load_dataset, Audio
|
| 13 |
+
|
| 14 |
+
dataset = load_dataset("mozilla-foundation/common_voice_11_0", "uk", split="validation")
|
| 15 |
+
# Resample
|
| 16 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
|
| 17 |
+
|
| 18 |
+
processor = AutoProcessor.from_pretrained("Respeecher/ukrainian-data2vec")
|
| 19 |
+
model = Data2VecAudioModel.from_pretrained("Respeecher/ukrainian-data2vec")
|
| 20 |
+
|
| 21 |
+
# audio file is decoded on the fly
|
| 22 |
+
inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
|
| 23 |
+
with torch.no_grad():
|
| 24 |
+
outputs = model(**inputs)
|
| 25 |
+
|
| 26 |
+
last_hidden_states = outputs.last_hidden_state
|
| 27 |
+
list(last_hidden_states.shape)
|
| 28 |
+
```
|