Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,3 +1,100 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model:
|
| 4 |
+
- Qwen/Qwen2.5-1.5B
|
| 5 |
+
- Qwen/Qwen2.5-3B
|
| 6 |
+
task_categories:
|
| 7 |
+
- text-classification
|
| 8 |
+
language:
|
| 9 |
+
- en
|
| 10 |
+
- zh
|
| 11 |
+
tags:
|
| 12 |
+
- quality-assessment
|
| 13 |
+
- text-quality
|
| 14 |
+
- regression
|
| 15 |
+
pipeline_tag: text-classification
|
| 16 |
+
library_name: transformers
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# Qwen2.5 Text Quality Classifier
|
| 20 |
+
|
| 21 |
+
Fine-tuned Qwen2.5-1.5B and Qwen2.5-3B models for automated text quality assessment. Predicts quality scores on a 0-1 scale focusing on educational value and mathematical intelligence.
|
| 22 |
+
|
| 23 |
+
## Model Details
|
| 24 |
+
|
| 25 |
+
- **Base Models**: Qwen2.5-1.5B / Qwen2.5-3B
|
| 26 |
+
- **Task**: Text Quality Regression
|
| 27 |
+
- **Languages**: English, Chinese
|
| 28 |
+
- **Training Data**: [OpenSQZ/Classifiers-Data](https://huggingface.co/datasets/OpenSQZ/Classifiers-Data)
|
| 29 |
+
- **Loss Function**: MSE Loss
|
| 30 |
+
|
| 31 |
+
## Performance
|
| 32 |
+
|
| 33 |
+
| Model | Test MSE Loss |
|
| 34 |
+
|-------|---------------|
|
| 35 |
+
| Qwen2.5-1.5B | 0.00226 |
|
| 36 |
+
| Qwen2.5-3B | 0.00209 |
|
| 37 |
+
|
| 38 |
+
## Quick Start
|
| 39 |
+
|
| 40 |
+
### Installation
|
| 41 |
+
```bash
|
| 42 |
+
pip install transformers torch
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
### Usage
|
| 46 |
+
|
| 47 |
+
```python
|
| 48 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 49 |
+
import torch
|
| 50 |
+
|
| 51 |
+
# Load model and tokenizer
|
| 52 |
+
model_name = "OpenSQZ/Qwen2.5-1.5B-Classifier" # or Qwen2.5-3B-Quality-Classifier
|
| 53 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 54 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 55 |
+
|
| 56 |
+
# Predict quality score
|
| 57 |
+
text = "Linear algebra is fundamental to understanding vector spaces and matrix operations in mathematics."
|
| 58 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=8192)
|
| 59 |
+
|
| 60 |
+
with torch.no_grad():
|
| 61 |
+
outputs = model(**inputs)
|
| 62 |
+
score = torch.sigmoid(outputs.logits).item()
|
| 63 |
+
|
| 64 |
+
print(f"Quality Score: {score:.3f}") # Output: Quality Score: 0.847
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
## Quality Score Interpretation
|
| 68 |
+
|
| 69 |
+
| Score Range | Quality Level | Use Case |
|
| 70 |
+
|-------------|---------------|----------|
|
| 71 |
+
| 0.8 - 1.0 | Excellent | Premium training data |
|
| 72 |
+
| 0.6 - 0.8 | Good | Standard training data |
|
| 73 |
+
| 0.4 - 0.6 | Average | Conditional use |
|
| 74 |
+
| 0.0 - 0.4 | Poor | Filter out |
|
| 75 |
+
|
| 76 |
+
## Model Selection
|
| 77 |
+
|
| 78 |
+
- **1.5B Model**: Faster inference, good for real-time applications
|
| 79 |
+
- **3B Model**: Higher accuracy, better for batch processing
|
| 80 |
+
|
| 81 |
+
## Limitations
|
| 82 |
+
|
| 83 |
+
- Optimized for educational and mathematical content
|
| 84 |
+
- May not generalize well to creative or subjective content
|
| 85 |
+
- Scores should be used as guidance, not absolute judgments
|
| 86 |
+
|
| 87 |
+
## Citation
|
| 88 |
+
|
| 89 |
+
```bibtex
|
| 90 |
+
@model{qwen25_quality_classifier_2025,
|
| 91 |
+
title={Qwen2.5 Text Quality Classifier},
|
| 92 |
+
author={Chao Li, Yifan Zhang},
|
| 93 |
+
year={2025},
|
| 94 |
+
publisher={OpenSQZ}
|
| 95 |
+
}
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
## License
|
| 99 |
+
|
| 100 |
+
Apache 2.0
|