File size: 17,749 Bytes
f219484
 
b61b38f
f219484
b61b38f
 
 
 
f219484
b61b38f
 
 
 
 
 
f219484
 
ec0cc57
f219484
b61b38f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f219484
b61b38f
f219484
b61b38f
 
f219484
b61b38f
f219484
b61b38f
 
 
 
 
f219484
b61b38f
 
 
 
f219484
b61b38f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f219484
 
 
 
 
 
b61b38f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
---
base_model:
- internlm/internlm2-chat-1_8b
language:
- multilingual
library_name: transformers
license: mit
pipeline_tag: image-text-to-text
tags:
- internvl
- vision
- ocr
- custom_code
- moe
base_model_relation: merge
---

# Mono-InternVL-2B-S1-2

This repository contains the Mono-InternVL-2B model, specifically the checkpoint after **S1.1 concept learning** and **S1.2 semantic learning**. This model is part of the work detailed in the paper [Mono-InternVL-1.5: Towards Cheaper and Faster Monolithic Multimodal Large Language Models](https://huggingface.co/papers/2507.12566).

For more detailed information, please refer to our [**project page**](https://internvl.github.io/blog/2024-10-10-Mono-InternVL/) and [**GitHub repository**](https://github.com/OpenGVLab/mono-internvl).

## πŸ“° News
- **2025.7**: We introduce [**Mono-InternVL-1.5**](https://arxiv.org/abs/2507.12566), a cheaper and faster monolithic MLLM with visual attention experts, improved training strategy (EViP++) and fused cuda kernel for multimodal MoE.
- **2025.3**: We release the SFT code on LLaVA-v1.5-mix665k dataset. We also release the [258M synthetic data](https://huggingface.co/datasets/OpenGVLab/Mono-InternVL-2B-Synthetic-Data) used in S1.2 to boost future research.
- **2025.2**: πŸŽ‰πŸŽ‰ Mono-InternVL is accepted by **CVPR 2025**. Also check out our [**SynerGen-VL**](https://huggingface.co/papers/2412.09604) (CVPR 2025) that extends the monolithic structure to unified image generation and multimodal understanding, which will be open-sourced soon.
- **2024.11**: Mono-InternVL is supported by [lmdeploy](https://github.com/InternLM/lmdeploy/pull/2727).
- **2024.11**: Mono-InternVL is supported by [vllm](https://github.com/vllm-project/vllm/pull/9528).

## ⭐️ Introduction

We release Mono-InternVL, a **monolithic** multimodal large language model (MLLM) that integrates visual encoding and textual decoding into a single LLM. In Mono-InternVL, a set of visual experts is embedded into the pre-trained LLM via a **mixture-of-experts (MoE) mechanism**. By freezing the LLM, Mono-InternVL ensures that visual capabilities are optimized without compromising the pre-trained language knowledge. Based on this structure, an innovative **Endogenous Visual Pretraining (EViP)** is introduced to realize coarse-to-fine visual learning.

Mono-InternVL achieves superior performance compared to state-of-the-art MLLM Mini-InternVL-2B-1.5 and significantly outperforms other monolithic MLLMs, as shown in the radar chart above. Meanwhile, it achieves better deployment efficiency, with first token latency reduced by up to 67%.

For more details, please refer to our [paper (V1)](https://arxiv.org/abs/2410.08202) and [paper (V1.5)](https://arxiv.org/abs/2507.12566).

## πŸ“Š Performance
|          Benchmark           | Chameleon-7B | EVE-7B (HD) |    Emu3    | Mini-InternVL-2B-1-5 | Mono-InternVL-2B |
| :--------------------------: | :----------: | :---------: | :--------: | :------------------: | :--------------: |
|             Type             |  Monolithic  | Monolithic  | Monolithic |       Modular        |    Monolithic    |
|      #Activated Params       |      7B      |     7B      |     8B     |         2.2B         |       1.8B       |
|                              |              |             |            |                      |                  |
|            MMVet             |     8.3      |    25.7     |    37.2    |         39.3         |       40.1       |
|      MMMU<sub>val</sub>      |     25.4     |    32.6     |    31.6    |         34.6         |       33.7       |
|      MME<sub>sum</sub>       |     170      |    1628     |     β€”      |         1902         |       1875       |
|  MMBench-EN<sub>test</sub>   |     31.1     |    52.3     |    58.5    |         70.9         |       65.5       |
| MathVista<sub>testmini</sub> |     22.3     |    34.2     |     β€”      |         41.1         |       45.7       |
|          SEED-Image          |     30.6     |    64.6     |    68.2    |         69.8         |       67.4       |
|           OCRBench           |      7       |     398     |    687     |         654          |       767        |
|       Hallusion-Bench        |     17.1     |    26.4     |     β€”      |         37.5         |       34.8       |
|    CCBench<sub>dev</sub>     |     3.5      |    16.3     |     β€”      |         63.5         |       66.3       |
|   Avg<sub>multimodal</sub>   |     16.1     |    38.9     |     β€”      |         54.4         |       55.2       |
|                              |              |             |            |                      |                  |
|    TextVQA<sub>val</sub>     |     4.8      |    56.8     |    64.7    |         70.5         |       72.6       |
|     SQA-I<sub>test</sub>     |     47.2     |    64.9     |    89.2    |         84.9         |       93.6       |
|      GQA<sub>test</sub>      |      β€”       |    62.6     |    60.3    |         61.6         |       59.5       |
|    DocVQA<sub>test</sub>     |     1.5      |    53.0     |    76.3    |         85.0         |       80.0       |
|     AI2D<sub>test</sub>      |     46.0     |    61.0     |    70.0    |         69.8         |       68.6       |
|    ChartQA<sub>test</sub>    |     2.9      |    59.1     |    68.6    |         74.8         |       73.7       |
|    InfoVQA<sub>test</sub>    |     5.0      |    25.0     |    43.8    |         55.4         |       43.0       |
|      Avg<sub>VQA</sub>       |     17.9     |    54.6     |    67.6    |         71.7         |       70.1       |

> * Sources of the results include the original papers, our evaluation with [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), and [OpenCompass](https://rank.opencompass.org.cn/leaderboard-multimodal/?m=REALTIME).
> * Average scores are computed by normalizing each metric to a range between 0 and 100.
> * Please note that evaluating the same model using different testing toolkits can result in slight differences, which is normal. Updates to code versions and variations in environment and hardware can also cause minor discrepancies in results.


## πŸš€ Inference

We provide an example code to run Mono-InternVL-2B inference using `transformers`.

> Please use transformers==4.37.2 to ensure the model works normally.

<details>
<summary>Inference with Transformers (click to expand)</summary>

```python
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values


path = 'OpenGVLab/Mono-InternVL-2B'
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

# set the max number of tiles in `max_num`
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)

# pure-text conversation
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}
Assistant: {response}')

question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}
Assistant: {response}')

# single-image single-round conversation
question = '<image>
Please describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}
Assistant: {response}')

# single-image multi-round conversation
question = '<image>
Please describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}
Assistant: {response}')

question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}
Assistant: {response}')
```

</details>


<details>
<summary>Inference with LMDeploy</summary>

Please install lmdeploy>=0.6.3 for Mono-InternVL support.

```python
from lmdeploy import pipeline
from lmdeploy.vl import load_image

image = load_image('./examples/image1.jpg')
pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
response = pipe(('Please describe the image shortly.', image))
print(response.text)
```
</details>

## πŸ”₯ Supervised Finetuning

Currently we provide the supervised finetuning (S2 instruction tuning) code on the LLaVA-v1.5-mix665k dataset. For details on the dataset, please refer to [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA).

<details>
<summary>Installation</summary>

- Clone this repository:

  ```bash
  git clone https://github.com/OpenGVLab/Mono-InternVL.git
  ```
  
- Create a conda virtual environment and activate it:

  ```bash
  conda create -n monointernvl python=3.9 -y
  conda activate monointernvl
  ```

- Install dependencies using `requirements.txt`:

  ```bash
  pip install -r requirements.txt
  ```

- Additional: Install `flash-attn==2.5.6`:

  ```bash
  pip install flash-attn==2.5.6 --no-build-isolation
  ```

  Alternatively you can compile from source:

  ```bash
  git clone https://github.com/Dao-AILab/flash-attention.git
  cd flash-attention
  git checkout v2.5.6
  python setup.py install
  ```
</details>

<details>
<summary>Dataset Preparation</summary>

#### LLaVA-v1.5-mix665k Dataset

1. Download the instruction tuning data:
```sh
mkdir playground
wget https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_v1_5_mix665k.json -P playground/
```

2. Download image datasets:

- COCO: [train2017](http://images.cocodataset.org/zips/train2017.zip)
- GQA: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
- OCR-VQA: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing)
- TextVQA: [train_val_images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
- VisualGenome: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
  
3. Organize data as follows:

```none
playground/
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ coco/train2017/
β”‚   β”œβ”€β”€ gqa/images/
β”‚   β”œβ”€β”€ ocr_vqa/images/
β”‚   β”œβ”€β”€ textvqa/train_images/
β”‚   └── vg/
β”‚       β”œβ”€β”€ VG_100K/
β”‚       └── VG_100K_2/
└── llava_v1_5_mix665k.json
```

#### Custom Dataset

For custom dataset, format your data in to a JSONL file, where each entry is a dictionary organized in the following format (similar to `llava_v1_5_mix665k.json`):

```python
{
    "id": "000000120375",
    "image": "coco/train2017/000000120375.jpg",
    "conversations": [
        {
            "from": "human",
            "value": "<image>
What type of vehicle is driving down the street in the image?"
        },
        {
            "from": "gpt",
            "value": "A red sports utility vehicle (SUV) is driving down the street in the image."
        },
        {
            "from": "human",
            "value": "Is the street crowded with people?"
        },
        {
            "from": "gpt",
            "value": "Yes, the street is filled with a considerable number of people, which indicates that the area is busy."
        }
        # (more turns ...)
    ]
}
```

Then modify the metadata file `shell/data_llava_finetune.json`:

```python
{
  "name of your dataset": {
    "root": "playground/data/", # combination of "root" and "image" in the JSONL gives the complete image path
    "annotation": "path to your JSONL",
    "data_augment": false,
    "repeat_time": 1,
    "length": 12345 # change to the actual number of samples in your dataset
  }
}
```

</details>

<details>
<summary>Model Preparation</summary>

We provide pretrained models of different stages (S1.1 concept learning, S1.2 semantic learning, S1.3 alignment learning).
Choose from the following models and download the weights to `workdirs/` folder.


| model name              | download                                                               |  size  |
| ----------------------- | ---------------------------------------------------------------------- |:------:|
| Mono-InternVL-2B-S1-1   | πŸ€— [HF link](https://huggingface.co/OpenGVLab/Mono-InternVL-2B-S1-1) | 6.2 GB |
| Mono-InternVL-2B-S1-2   | πŸ€— [HF link](https://huggingface.co/OpenGVLab/Mono-InternVL-2B-S1-2) | 6.2 GB |
| Mono-InternVL-2B-S1-3   | πŸ€— [HF link](https://huggingface.co/OpenGVLab/Mono-InternVL-2B-S1-3) | 6.2 GB |


```sh
mkdir workdirs
cd workdirs/
# pip install -U huggingface_hub
huggingface-cli download --resume-download --local-dir-use-symlinks False OpenGVLab/Mono-InternVL-2B-S1-1 --local-dir Mono-InternVL-2B-S1-1
```

The directory structure is:

```sh
workdirs/
β”œβ”€β”€ Mono-InternVL-2B-S1-1/
β”œβ”€β”€ Mono-InternVL-2B-S1-2/
└── Mono-InternVL-2B-S1-3/
```
</details>

<details>
<summary>Training</summary>

Finetuning takes around 12 hours on 8x A100 (80G) GPUs.

#### Single Node Multi-GPU
```sh
MODEL="./workdirs/Mono-InternVL-2B-S1-3" OUTPUT_DIR="./workdirs/mono_internvl_llava_sft" sh shell/mono_internvl_finetune_llava_torchrun.sh
```

#### Slurm Cluster
```sh
PARTITION="your partition" MODEL="./workdirs/Mono-InternVL-2B-S1-3" OUTPUT_DIR="./workdirs/mono_internvl_llava_sft" sh shell/mono_internvl_finetune_llava_slurm.sh
```

</details>


## 🎫 License

This project is released under the [MIT License](LICENSE).

## πŸ–ŠοΈ Citation

If you find this work helpful in your research, please consider giving this repo a star ⭐ and citing our paper:

```bibtex
@article{mono_internvl_v1,
  title={Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training},
  author={Luo, Gen and Yang, Xue and Dou, Wenhan and Wang, Zhaokai and Liu, Jiawen and Dai, Jifeng and Qiao, Yu and Zhu, Xizhou},
  journal={arXiv preprint arXiv:2410.08202},
  year={2024}
}

@article{mono_internvl_v1.5,
  title={Mono-InternVL-1.5: Towards Cheaper and Faster Monolithic Multimodal Large Language Models},
  author={Luo, Gen and Dou, Wenhan and Li, Wenhao and Wang, Zhaokai and Yang, Xue and Tian, Changyao and Li, Hao and Wang, Weiyun and Wang, Wenhai and Zhu, Xizhou and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2507.12566},
  year={2025}
}
```