fmasterpro27 commited on
Commit
9ba0b57
·
verified ·
1 Parent(s): 66a8371

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -8
README.md CHANGED
@@ -103,6 +103,7 @@ tags:
103
  - audio
104
  - automatic-speech-recognition
105
  - hf-asr-leaderboard
 
106
  widget:
107
  - example_title: Librispeech sample 1
108
  src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
@@ -159,13 +160,64 @@ base_model:
159
  - openai/whisper-base
160
  ---
161
 
162
- # Whisper Base FP16 (SafeTensors)
163
 
164
- This repository contains **OpenAI Whisper Base** converted to **float16**
165
- and stored in **SafeTensors** format.
166
 
167
- ## Details
168
- - Parameters: ~74M
169
- - Precision: float16
170
- - Weight tying preserved
171
- - Transformers compatible
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  - audio
104
  - automatic-speech-recognition
105
  - hf-asr-leaderboard
106
+ - open4bits
107
  widget:
108
  - example_title: Librispeech sample 1
109
  src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
 
160
  - openai/whisper-base
161
  ---
162
 
163
+ # Open4bits / Whisper Base FP16
164
 
165
+ This repository provides the **Whisper Base model converted to FP16 (float16) precision**, published by Open4bits to enable more efficient inference while maintaining transcription quality.
 
166
 
167
+ The underlying Whisper model and architecture are **owned by OpenAI**. This repository contains only a precision-converted version of the original model weights.
168
+
169
+ The model is designed for multilingual speech-to-text tasks and can be used in research, experimentation, and production ASR pipelines.
170
+
171
+ ---
172
+
173
+ ## Model Overview
174
+
175
+ Whisper is a sequence-to-sequence transformer model developed by OpenAI for automatic speech recognition and speech translation.
176
+ This release uses the **Base** variant and preserves the original architecture while reducing memory usage through FP16 precision.
177
+
178
+ ---
179
+
180
+ ## Model Details
181
+
182
+ - **Architecture:** Whisper Base
183
+ - **Parameters:** ~74 million
184
+ - **Precision:** float16 (FP16)
185
+ - **Task:** Automatic Speech Recognition (ASR)
186
+ - **Languages:** Multilingual
187
+ - **Weight tying:** Preserved
188
+ - **Compatibility:** Hugging Face Transformers, PyTorch
189
+
190
+ This conversion improves inference speed and lowers VRAM requirements compared to FP32 versions, making it suitable for deployment on consumer and server-grade GPUs.
191
+
192
+ ---
193
+
194
+ ## Intended Use
195
+
196
+ This model is intended for:
197
+ - Speech-to-text transcription
198
+ - Multilingual ASR applications
199
+ - Research and benchmarking
200
+ - Efficient inference in low-memory environments
201
+
202
+ ---
203
+
204
+ ## Limitations
205
+
206
+ * Performance depends on audio quality, language, and accent
207
+ * Inherits known limitations of the Whisper Base architecture
208
+ * Not fine-tuned for domain-specific or highly noisy audio
209
+
210
+ ---
211
+
212
+ ## License
213
+
214
+ This model is released under the **Apache License 2.0**.
215
+ The original Whisper model and associated intellectual property are owned by OpenAI.
216
+
217
+ ---
218
+
219
+ ## Support
220
+
221
+ If you find this model useful, please consider supporting the project.
222
+ Your support helps us continue releasing and maintaining high-quality open models.
223
+ Support us with a heart.