Upload handler.py
Browse files- handler.py +8 -6
handler.py
CHANGED
|
@@ -5,8 +5,11 @@ from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, Torch
|
|
| 5 |
from PIL import Image
|
| 6 |
import torch
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
#from huggingface_inference_toolkit.logging import logger
|
| 12 |
|
|
@@ -18,7 +21,6 @@ def compile_pipeline(pipe) -> Any:
|
|
| 18 |
|
| 19 |
class EndpointHandler:
|
| 20 |
def __init__(self, path=""):
|
| 21 |
-
is_compile = False
|
| 22 |
repo_id = "camenduru/FLUX.1-dev-diffusers"
|
| 23 |
#repo_id = "NoMoreCopyright/FLUX.1-dev-test"
|
| 24 |
dtype = torch.bfloat16
|
|
@@ -26,7 +28,7 @@ class EndpointHandler:
|
|
| 26 |
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
| 27 |
#transformer = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype, quantization_config=quantization_config).to("cuda")
|
| 28 |
self.pipeline = FluxPipeline.from_pretrained(repo_id, vae=vae, torch_dtype=dtype, quantization_config=quantization_config)
|
| 29 |
-
if
|
| 30 |
self.pipeline.to("cuda")
|
| 31 |
|
| 32 |
#@torch.inference_mode()
|
|
@@ -45,9 +47,9 @@ class EndpointHandler:
|
|
| 45 |
|
| 46 |
parameters = data.pop("parameters", {})
|
| 47 |
|
| 48 |
-
num_inference_steps = parameters.get("num_inference_steps",
|
| 49 |
width = parameters.get("width", 1024)
|
| 50 |
-
height = parameters.get("height",
|
| 51 |
guidance_scale = parameters.get("guidance_scale", 3.5)
|
| 52 |
|
| 53 |
# seed generator (seed cannot be provided as is but via a generator)
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
import torch
|
| 7 |
|
| 8 |
+
IS_COMPILE = True
|
| 9 |
+
|
| 10 |
+
if IS_COMPILE:
|
| 11 |
+
import torch._dynamo
|
| 12 |
+
torch._dynamo.config.suppress_errors = True
|
| 13 |
|
| 14 |
#from huggingface_inference_toolkit.logging import logger
|
| 15 |
|
|
|
|
| 21 |
|
| 22 |
class EndpointHandler:
|
| 23 |
def __init__(self, path=""):
|
|
|
|
| 24 |
repo_id = "camenduru/FLUX.1-dev-diffusers"
|
| 25 |
#repo_id = "NoMoreCopyright/FLUX.1-dev-test"
|
| 26 |
dtype = torch.bfloat16
|
|
|
|
| 28 |
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
| 29 |
#transformer = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype, quantization_config=quantization_config).to("cuda")
|
| 30 |
self.pipeline = FluxPipeline.from_pretrained(repo_id, vae=vae, torch_dtype=dtype, quantization_config=quantization_config)
|
| 31 |
+
if IS_COMPILE: self.pipeline = compile_pipeline(self.pipeline)
|
| 32 |
self.pipeline.to("cuda")
|
| 33 |
|
| 34 |
#@torch.inference_mode()
|
|
|
|
| 47 |
|
| 48 |
parameters = data.pop("parameters", {})
|
| 49 |
|
| 50 |
+
num_inference_steps = parameters.get("num_inference_steps", 28)
|
| 51 |
width = parameters.get("width", 1024)
|
| 52 |
+
height = parameters.get("height", 1024)
|
| 53 |
guidance_scale = parameters.get("guidance_scale", 3.5)
|
| 54 |
|
| 55 |
# seed generator (seed cannot be provided as is but via a generator)
|