Upload llm-jp-3-13b_train.py
Browse files- llm-jp-3-13b_train.py +168 -0
llm-jp-3-13b_train.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 2 |
+
from unsloth import FastLanguageModel
|
| 3 |
+
import torch
|
| 4 |
+
from datasets import load_dataset, concatenate_datasets
|
| 5 |
+
|
| 6 |
+
from trl import SFTTrainer
|
| 7 |
+
from transformers import TrainingArguments
|
| 8 |
+
from unsloth import is_bfloat16_supported
|
| 9 |
+
|
| 10 |
+
max_seq_length = 512 # unslothではRoPEをサポートしているのでコンテキスト長は自由に設定可能
|
| 11 |
+
dtype = None # Noneにしておけば自動で設定
|
| 12 |
+
load_in_4bit = True # 今回は8Bクラスのモデルを扱うためTrue
|
| 13 |
+
|
| 14 |
+
model_id = "llm-jp/llm-jp-3-13b"
|
| 15 |
+
new_model_id = "llm-jp-3-13b-it" #Fine-Tuningしたモデルにつけたい名前、it: Instruction Tuning
|
| 16 |
+
# FastLanguageModel インスタンスを作成
|
| 17 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 18 |
+
model_name=model_id,
|
| 19 |
+
dtype=dtype,
|
| 20 |
+
load_in_4bit=load_in_4bit,
|
| 21 |
+
trust_remote_code=True,
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# SFT用のモデルを用意
|
| 25 |
+
model = FastLanguageModel.get_peft_model(
|
| 26 |
+
model,
|
| 27 |
+
r = 32,
|
| 28 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
| 29 |
+
"gate_proj", "up_proj", "down_proj",],
|
| 30 |
+
lora_alpha = 32,
|
| 31 |
+
lora_dropout = 0.05,
|
| 32 |
+
bias = "none",
|
| 33 |
+
use_gradient_checkpointing = "unsloth",
|
| 34 |
+
random_state = 3407,
|
| 35 |
+
use_rslora = False,
|
| 36 |
+
loftq_config = None,
|
| 37 |
+
max_seq_length = max_seq_length,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
datasets_list = [
|
| 42 |
+
"/home/knishizawa/Matsuo_AI/LLM_Course2024/Distribution20241221_all/ichikara-instruction-003-001-1.json",
|
| 43 |
+
"/home/knishizawa/Matsuo_AI/LLM_Course2024/Distribution20241221_all/ichikara-instruction-003-001-2.1.json",
|
| 44 |
+
"/home/knishizawa/Matsuo_AI/LLM_Course2024/Distribution20241221_all/ichikara-instruction-003-001-2.2.json",
|
| 45 |
+
"/home/knishizawa/Matsuo_AI/LLM_Course2024/Distribution20241221_all/ichikara-instruction-003-001-5.1.json",
|
| 46 |
+
"/home/knishizawa/Matsuo_AI/LLM_Course2024/Distribution20241221_all/ichikara-instruction-003-001-5.2.json",
|
| 47 |
+
"/home/knishizawa/Matsuo_AI/LLM_Course2024/Distribution20241221_all/ichikara-instruction-003-002-1.json",
|
| 48 |
+
"/home/knishizawa/Matsuo_AI/LLM_Course2024/Distribution20241221_all/ichikara-instruction-003-003-1.json"
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
valid_datasets = []
|
| 52 |
+
|
| 53 |
+
# 学習時のプロンプトフォーマットの定義
|
| 54 |
+
prompt = """### 指示
|
| 55 |
+
{}
|
| 56 |
+
### 回答
|
| 57 |
+
{}"""
|
| 58 |
+
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン
|
| 59 |
+
|
| 60 |
+
# フォーマット関数
|
| 61 |
+
def formatting_prompts_func(examples):
|
| 62 |
+
input_text = examples["text"]
|
| 63 |
+
output_text = examples["output"]
|
| 64 |
+
text = prompt.format(input_text, output_text) + EOS_TOKEN
|
| 65 |
+
return { "formatted_text": text }
|
| 66 |
+
|
| 67 |
+
# データセットのロードとフォーマット
|
| 68 |
+
for file in datasets_list:
|
| 69 |
+
try:
|
| 70 |
+
dataset = load_dataset("json", data_files=file, split="train")
|
| 71 |
+
dataset = dataset.map(formatting_prompts_func, num_proc=4)
|
| 72 |
+
valid_datasets.append(dataset)
|
| 73 |
+
print(f"成功: {file} - {len(dataset)} 件ロード")
|
| 74 |
+
# データ確認
|
| 75 |
+
print(dataset[3]["formatted_text"])
|
| 76 |
+
except Exception as e:
|
| 77 |
+
print(f"エラー: {file} - {e}")
|
| 78 |
+
|
| 79 |
+
# マージと保存
|
| 80 |
+
if valid_datasets:
|
| 81 |
+
merged_dataset = concatenate_datasets(valid_datasets)
|
| 82 |
+
if len(merged_dataset) > 0:
|
| 83 |
+
save_dir = "/home/knishizawa/Matsuo_AI/LLM_Course2024/merged_dataset"
|
| 84 |
+
merged_dataset.save_to_disk(save_dir)
|
| 85 |
+
print(f"マージされたデータセットが {save_dir} に保存されました。")
|
| 86 |
+
else:
|
| 87 |
+
print("マージされたデータセットが空です。")
|
| 88 |
+
else:
|
| 89 |
+
print("有効なデータセットが見つかりませんでした。")
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
trainer = SFTTrainer(
|
| 93 |
+
model = model,
|
| 94 |
+
tokenizer = tokenizer,
|
| 95 |
+
train_dataset=merged_dataset,
|
| 96 |
+
max_seq_length = max_seq_length,
|
| 97 |
+
dataset_text_field="formatted_text",
|
| 98 |
+
packing = False,
|
| 99 |
+
args = TrainingArguments(
|
| 100 |
+
per_device_train_batch_size = 2,
|
| 101 |
+
gradient_accumulation_steps = 4,
|
| 102 |
+
num_train_epochs = 1,
|
| 103 |
+
logging_steps = 10,
|
| 104 |
+
warmup_steps = 10,
|
| 105 |
+
save_steps=100,
|
| 106 |
+
save_total_limit=2,
|
| 107 |
+
max_steps=-1,
|
| 108 |
+
learning_rate = 2e-4,
|
| 109 |
+
fp16 = not is_bfloat16_supported(),
|
| 110 |
+
bf16 = is_bfloat16_supported(),
|
| 111 |
+
group_by_length=True,
|
| 112 |
+
seed = 3407,
|
| 113 |
+
output_dir = "outputs",
|
| 114 |
+
report_to = "none",
|
| 115 |
+
),
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# 学習実行
|
| 119 |
+
trainer_stats = trainer.train()
|
| 120 |
+
# モデルの保存ディレクトリ
|
| 121 |
+
save_dir = "./saved_model"
|
| 122 |
+
# モデルの保存
|
| 123 |
+
model.save_pretrained(save_dir)
|
| 124 |
+
# トークナイザの保存 (必要に応じて)
|
| 125 |
+
tokenizer.save_pretrained(save_dir)
|
| 126 |
+
print(f"モデルが {save_dir} に保存されました。")
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# ELYZA-tasks-100-TVの読み込み。事前にファイルをアップロードしてください
|
| 131 |
+
# データセットの読み込み。
|
| 132 |
+
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
|
| 133 |
+
import json
|
| 134 |
+
datasets = []
|
| 135 |
+
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
|
| 136 |
+
item = ""
|
| 137 |
+
for line in f:
|
| 138 |
+
line = line.strip()
|
| 139 |
+
item += line
|
| 140 |
+
if item.endswith("}"):
|
| 141 |
+
datasets.append(json.loads(item))
|
| 142 |
+
item = ""
|
| 143 |
+
|
| 144 |
+
# 学習したモデルを用いてタスクを実行
|
| 145 |
+
from tqdm import tqdm
|
| 146 |
+
|
| 147 |
+
# 推論するためにモデルのモードを変更
|
| 148 |
+
FastLanguageModel.for_inference(model)
|
| 149 |
+
|
| 150 |
+
results = []
|
| 151 |
+
for dt in tqdm(datasets):
|
| 152 |
+
input = dt["input"]
|
| 153 |
+
|
| 154 |
+
prompt = f"""### 指示\n{input}\n### 回答\n"""
|
| 155 |
+
|
| 156 |
+
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
|
| 157 |
+
|
| 158 |
+
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
|
| 159 |
+
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
|
| 160 |
+
|
| 161 |
+
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
|
| 162 |
+
|
| 163 |
+
# jsonlで保存
|
| 164 |
+
with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f:
|
| 165 |
+
for result in results:
|
| 166 |
+
json.dump(result, f, ensure_ascii=False)
|
| 167 |
+
f.write('\n')
|
| 168 |
+
|