Add modeling_ollama.py
Browse files- modeling_ollama.py +246 -0
modeling_ollama.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
NeuralQuantum Ollama Model Implementation for Hugging Face Transformers
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from transformers import PreTrainedModel
|
| 8 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 9 |
+
from .configuration_ollama import NeuralQuantumOllamaConfig
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class QuantumOllamaLayer(nn.Module):
|
| 13 |
+
"""Quantum-inspired layer optimized for Ollama"""
|
| 14 |
+
|
| 15 |
+
def __init__(self, config):
|
| 16 |
+
super().__init__()
|
| 17 |
+
self.config = config
|
| 18 |
+
self.quantum_circuit_depth = config.quantum_circuit_depth
|
| 19 |
+
self.hidden_size = config.hidden_size
|
| 20 |
+
|
| 21 |
+
# Quantum-inspired parameters optimized for Ollama
|
| 22 |
+
self.quantum_weights = nn.Parameter(torch.randn(self.quantum_circuit_depth, self.hidden_size, self.hidden_size))
|
| 23 |
+
self.quantum_bias = nn.Parameter(torch.randn(self.hidden_size))
|
| 24 |
+
self.quantum_scale = nn.Parameter(torch.ones(self.hidden_size))
|
| 25 |
+
|
| 26 |
+
def forward(self, hidden_states):
|
| 27 |
+
# Simulate quantum circuit operations optimized for Ollama
|
| 28 |
+
for i in range(self.quantum_circuit_depth):
|
| 29 |
+
# Apply quantum-inspired transformation with scaling
|
| 30 |
+
hidden_states = torch.matmul(hidden_states, self.quantum_weights[i])
|
| 31 |
+
hidden_states = torch.tanh(hidden_states) # Non-linear activation
|
| 32 |
+
hidden_states = hidden_states * self.quantum_scale
|
| 33 |
+
|
| 34 |
+
return hidden_states + self.quantum_bias
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class NeuralQuantumOllamaAttention(nn.Module):
|
| 38 |
+
"""Quantum-enhanced attention mechanism optimized for Ollama"""
|
| 39 |
+
|
| 40 |
+
def __init__(self, config):
|
| 41 |
+
super().__init__()
|
| 42 |
+
self.config = config
|
| 43 |
+
self.num_attention_heads = config.num_attention_heads
|
| 44 |
+
self.hidden_size = config.hidden_size
|
| 45 |
+
self.head_dim = self.hidden_size // self.num_attention_heads
|
| 46 |
+
|
| 47 |
+
self.query = nn.Linear(self.hidden_size, self.hidden_size)
|
| 48 |
+
self.key = nn.Linear(self.hidden_size, self.hidden_size)
|
| 49 |
+
self.value = nn.Linear(self.hidden_size, self.hidden_size)
|
| 50 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 51 |
+
|
| 52 |
+
# Quantum enhancement layer optimized for Ollama
|
| 53 |
+
self.quantum_layer = QuantumOllamaLayer(config)
|
| 54 |
+
|
| 55 |
+
def forward(self, hidden_states, attention_mask=None):
|
| 56 |
+
batch_size, seq_len, hidden_size = hidden_states.size()
|
| 57 |
+
|
| 58 |
+
# Apply quantum enhancement
|
| 59 |
+
quantum_enhanced = self.quantum_layer(hidden_states)
|
| 60 |
+
|
| 61 |
+
# Standard attention computation
|
| 62 |
+
query = self.query(quantum_enhanced)
|
| 63 |
+
key = self.key(quantum_enhanced)
|
| 64 |
+
value = self.value(quantum_enhanced)
|
| 65 |
+
|
| 66 |
+
# Reshape for multi-head attention
|
| 67 |
+
query = query.view(batch_size, seq_len, self.num_attention_heads, self.head_dim).transpose(1, 2)
|
| 68 |
+
key = key.view(batch_size, seq_len, self.num_attention_heads, self.head_dim).transpose(1, 2)
|
| 69 |
+
value = value.view(batch_size, seq_len, self.num_attention_heads, self.head_dim).transpose(1, 2)
|
| 70 |
+
|
| 71 |
+
# Compute attention scores
|
| 72 |
+
attention_scores = torch.matmul(query, key.transpose(-2, -1)) / (self.head_dim ** 0.5)
|
| 73 |
+
|
| 74 |
+
if attention_mask is not None:
|
| 75 |
+
attention_scores = attention_scores.masked_fill(attention_mask == 0, -1e9)
|
| 76 |
+
|
| 77 |
+
attention_probs = torch.softmax(attention_scores, dim=-1)
|
| 78 |
+
attention_probs = self.dropout(attention_probs)
|
| 79 |
+
|
| 80 |
+
# Apply attention to values
|
| 81 |
+
context = torch.matmul(attention_probs, value)
|
| 82 |
+
context = context.transpose(1, 2).contiguous().view(batch_size, seq_len, hidden_size)
|
| 83 |
+
|
| 84 |
+
return context
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class NeuralQuantumOllamaBlock(nn.Module):
|
| 88 |
+
"""NeuralQuantum Ollama transformer block"""
|
| 89 |
+
|
| 90 |
+
def __init__(self, config):
|
| 91 |
+
super().__init__()
|
| 92 |
+
self.config = config
|
| 93 |
+
self.attention = NeuralQuantumOllamaAttention(config)
|
| 94 |
+
self.ln_1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 95 |
+
self.mlp = nn.Sequential(
|
| 96 |
+
nn.Linear(config.hidden_size, config.intermediate_size),
|
| 97 |
+
nn.GELU(),
|
| 98 |
+
nn.Linear(config.intermediate_size, config.hidden_size),
|
| 99 |
+
nn.Dropout(config.hidden_dropout_prob)
|
| 100 |
+
)
|
| 101 |
+
self.ln_2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 102 |
+
|
| 103 |
+
def forward(self, hidden_states, attention_mask=None):
|
| 104 |
+
# Self-attention with residual connection
|
| 105 |
+
attn_output = self.attention(hidden_states, attention_mask)
|
| 106 |
+
hidden_states = self.ln_1(hidden_states + attn_output)
|
| 107 |
+
|
| 108 |
+
# MLP with residual connection
|
| 109 |
+
mlp_output = self.mlp(hidden_states)
|
| 110 |
+
hidden_states = self.ln_2(hidden_states + mlp_output)
|
| 111 |
+
|
| 112 |
+
return hidden_states
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class NeuralQuantumOllamaForCausalLM(PreTrainedModel):
|
| 116 |
+
"""NeuralQuantum Ollama model for causal language modeling"""
|
| 117 |
+
|
| 118 |
+
config_class = NeuralQuantumOllamaConfig
|
| 119 |
+
|
| 120 |
+
def __init__(self, config):
|
| 121 |
+
super().__init__(config)
|
| 122 |
+
self.config = config
|
| 123 |
+
|
| 124 |
+
# Embeddings
|
| 125 |
+
self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
|
| 126 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
| 127 |
+
self.drop = nn.Dropout(config.hidden_dropout_prob)
|
| 128 |
+
|
| 129 |
+
# Transformer blocks
|
| 130 |
+
self.h = nn.ModuleList([
|
| 131 |
+
NeuralQuantumOllamaBlock(config) for _ in range(config.num_hidden_layers)
|
| 132 |
+
])
|
| 133 |
+
|
| 134 |
+
# Output layer
|
| 135 |
+
self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 136 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 137 |
+
|
| 138 |
+
# Initialize weights
|
| 139 |
+
self.init_weights()
|
| 140 |
+
|
| 141 |
+
def get_input_embeddings(self):
|
| 142 |
+
return self.wte
|
| 143 |
+
|
| 144 |
+
def set_input_embeddings(self, new_embeddings):
|
| 145 |
+
self.wte = new_embeddings
|
| 146 |
+
|
| 147 |
+
def get_output_embeddings(self):
|
| 148 |
+
return self.lm_head
|
| 149 |
+
|
| 150 |
+
def set_output_embeddings(self, new_embeddings):
|
| 151 |
+
self.lm_head = new_embeddings
|
| 152 |
+
|
| 153 |
+
def forward(
|
| 154 |
+
self,
|
| 155 |
+
input_ids=None,
|
| 156 |
+
attention_mask=None,
|
| 157 |
+
position_ids=None,
|
| 158 |
+
past_key_values=None,
|
| 159 |
+
use_cache=None,
|
| 160 |
+
output_attentions=None,
|
| 161 |
+
output_hidden_states=None,
|
| 162 |
+
return_dict=None,
|
| 163 |
+
labels=None,
|
| 164 |
+
):
|
| 165 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 166 |
+
|
| 167 |
+
batch_size, seq_len = input_ids.size()
|
| 168 |
+
|
| 169 |
+
# Position embeddings
|
| 170 |
+
if position_ids is None:
|
| 171 |
+
position_ids = torch.arange(0, seq_len, dtype=torch.long, device=input_ids.device)
|
| 172 |
+
position_ids = position_ids.unsqueeze(0).expand(batch_size, -1)
|
| 173 |
+
|
| 174 |
+
# Input embeddings
|
| 175 |
+
inputs_embeds = self.wte(input_ids)
|
| 176 |
+
position_embeds = self.wpe(position_ids)
|
| 177 |
+
hidden_states = inputs_embeds + position_embeds
|
| 178 |
+
hidden_states = self.drop(hidden_states)
|
| 179 |
+
|
| 180 |
+
# Transformer blocks
|
| 181 |
+
for i, block in enumerate(self.h):
|
| 182 |
+
hidden_states = block(hidden_states, attention_mask)
|
| 183 |
+
|
| 184 |
+
# Final layer norm
|
| 185 |
+
hidden_states = self.ln_f(hidden_states)
|
| 186 |
+
|
| 187 |
+
# Language modeling head
|
| 188 |
+
logits = self.lm_head(hidden_states)
|
| 189 |
+
|
| 190 |
+
loss = None
|
| 191 |
+
if labels is not None:
|
| 192 |
+
# Shift so that tokens < n predict n
|
| 193 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 194 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 195 |
+
|
| 196 |
+
# Flatten the tokens
|
| 197 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 198 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 199 |
+
|
| 200 |
+
if not return_dict:
|
| 201 |
+
output = (logits,) + (None,) * 6
|
| 202 |
+
return ((loss,) + output) if loss is not None else output
|
| 203 |
+
|
| 204 |
+
return CausalLMOutputWithPast(
|
| 205 |
+
loss=loss,
|
| 206 |
+
logits=logits,
|
| 207 |
+
past_key_values=None,
|
| 208 |
+
hidden_states=None,
|
| 209 |
+
attentions=None,
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
def generate(self, input_ids, max_length=50, temperature=0.7, top_p=0.9, top_k=40, do_sample=True, **kwargs):
|
| 213 |
+
"""Generate text using Ollama-optimized parameters"""
|
| 214 |
+
self.eval()
|
| 215 |
+
|
| 216 |
+
with torch.no_grad():
|
| 217 |
+
for _ in range(max_length - input_ids.size(1)):
|
| 218 |
+
# Get logits for the last token
|
| 219 |
+
outputs = self.forward(input_ids)
|
| 220 |
+
logits = outputs.logits[:, -1, :] / temperature
|
| 221 |
+
|
| 222 |
+
if do_sample:
|
| 223 |
+
# Apply top-k filtering
|
| 224 |
+
if top_k > 0:
|
| 225 |
+
top_k_logits, top_k_indices = torch.topk(logits, top_k)
|
| 226 |
+
logits = torch.full_like(logits, -float('inf'))
|
| 227 |
+
logits.scatter_(1, top_k_indices, top_k_logits)
|
| 228 |
+
|
| 229 |
+
# Apply top-p filtering
|
| 230 |
+
if top_p < 1.0:
|
| 231 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 232 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
| 233 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 234 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 235 |
+
sorted_indices_to_remove[..., 0] = 0
|
| 236 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
| 237 |
+
logits[indices_to_remove] = -float('inf')
|
| 238 |
+
|
| 239 |
+
probs = torch.softmax(logits, dim=-1)
|
| 240 |
+
next_token = torch.multinomial(probs, 1)
|
| 241 |
+
else:
|
| 242 |
+
next_token = torch.argmax(logits, dim=-1, keepdim=True)
|
| 243 |
+
|
| 244 |
+
input_ids = torch.cat([input_ids, next_token], dim=1)
|
| 245 |
+
|
| 246 |
+
return input_ids
|