File size: 2,042 Bytes
25bf69d 10df994 25bf69d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: mit
datasets:
- sweatSmile/neet-biology-qa
language:
- en
base_model:
- distilbert/distilbert-base-uncased
pipeline_tag: question-answering
library_name: transformers
tags:
- neet
- biology
- exam
- bio
---
DistilBERT NEET Biology MCQ Classifier (NEET_BioBERT)
This model is a fine-tuned version of DistilBERT (base uncased) specifically trained to classify the correct option for NEET-style multiple-choice biology questions. It selects the best answer among four choices (A, B, C, D).
-------------------------------------------------------------------------
Training Data
Source: sweatSmile / NEET Biology QA Dataset
Domain: NEET (Undergraduate Medical Entrance Exam) – Biology
Format: Each question has 4 options with one correct answer
Dataset Size: 793 questions
Split: 80% train / 20% validation
-------------------------------------------------------------------------
Training Configuration
Base Model: distilbert-base-uncased
Epochs: 10
Batch Size: 4
Learning Rate: 5e-5
Weight Decay: 0.01
Task Type: Multiple Choice Classification
-------------------------------------------------------------------------
Results
Validation Accuracy 72.96% (~73%)
Final Training Loss ~0.35
-------------------------------------------------------------------------
Limitations
Trained on a relatively small dataset (793 questions).
Limited to NEET-level biology content; not suitable for physics or chemistry.
Does not support:
Assertion-reasoning questions
Diagram-based questions
Paragraph/Case study type questions
-------------------------------------------------------------------------
Intended Use
Educational Research
AI-powered NEET Biology assistants
MCQ practice evaluation
Baseline model for future fine-tuning with larger datasets
-------------------------------------------------------------------------
NOTE:
Not recommended as a final exam-ready solution without further fine-tuning and validation.
-------------------------------------------------------------------------
License: MIT |