Create modeling_components.py
Browse files
src/veronica/modeling_components.py
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple, List
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def apply_rotary_pos_emb(q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 10 |
+
"""
|
| 11 |
+
Applica Rotary Positional Embeddings (RoPE) a query e key.
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
q: Query tensor di shape (B, nh, T, hd)
|
| 15 |
+
k: Key tensor di shape (B, nh, T, hd)
|
| 16 |
+
cos: Cosine values di shape (1, 1, T, hd)
|
| 17 |
+
sin: Sine values di shape (1, 1, T, hd)
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
Tuple[torch.Tensor, torch.Tensor]: (q_rotated, k_rotated)
|
| 21 |
+
"""
|
| 22 |
+
# Dividi le dimensioni in metà per rotazione complessa
|
| 23 |
+
# q, k: (B, nh, T, hd) -> split in (B, nh, T, hd/2) pairs
|
| 24 |
+
hd = q.shape[-1]
|
| 25 |
+
assert hd % 2 == 0, "head_dim deve essere pari per RoPE"
|
| 26 |
+
|
| 27 |
+
q1, q2 = q[..., :hd//2], q[..., hd//2:]
|
| 28 |
+
k1, k2 = k[..., :hd//2], k[..., hd//2:]
|
| 29 |
+
|
| 30 |
+
# Applica rotazione: [cos*q1 - sin*q2, sin*q1 + cos*q2]
|
| 31 |
+
cos_half = cos[..., :hd//2]
|
| 32 |
+
sin_half = sin[..., :hd//2]
|
| 33 |
+
|
| 34 |
+
q_rot = torch.cat([
|
| 35 |
+
q1 * cos_half - q2 * sin_half,
|
| 36 |
+
q1 * sin_half + q2 * cos_half
|
| 37 |
+
], dim=-1)
|
| 38 |
+
|
| 39 |
+
k_rot = torch.cat([
|
| 40 |
+
k1 * cos_half - k2 * sin_half,
|
| 41 |
+
k1 * sin_half + k2 * cos_half
|
| 42 |
+
], dim=-1)
|
| 43 |
+
|
| 44 |
+
return q_rot, k_rot
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def router_aux_loss(alpha: torch.Tensor) -> torch.Tensor:
|
| 48 |
+
"""
|
| 49 |
+
Entropia media della distribuzione alpha sui K rami.
|
| 50 |
+
alpha: (B, T, K)
|
| 51 |
+
Ritorna entropia normalizzata in [0, 1] circa.
|
| 52 |
+
"""
|
| 53 |
+
if alpha is None:
|
| 54 |
+
return torch.tensor(0.0, device="cpu")
|
| 55 |
+
eps = 1e-9
|
| 56 |
+
k = alpha.size(-1)
|
| 57 |
+
ent = -(alpha * (alpha.clamp_min(eps)).log()).sum(dim=-1) # (B, T)
|
| 58 |
+
norm_ent = ent / (torch.log(torch.tensor(float(k), device=alpha.device)))
|
| 59 |
+
return norm_ent.mean()
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class DepthwiseCausalConv1d(nn.Module):
|
| 63 |
+
"""
|
| 64 |
+
Depthwise 1D causal convolution sulla dimensione di sequenza.
|
| 65 |
+
|
| 66 |
+
Input: (B, T, H) -> output: (B, T, H)
|
| 67 |
+
groups=H per avere un filtro per canale.
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
def __init__(self, channels: int, kernel_size: int = 3):
|
| 71 |
+
super().__init__()
|
| 72 |
+
assert kernel_size >= 1 and kernel_size % 2 == 1, "kernel_size should be odd"
|
| 73 |
+
self.kernel_size = kernel_size
|
| 74 |
+
self.pad = kernel_size - 1
|
| 75 |
+
self.conv = nn.Conv1d(
|
| 76 |
+
in_channels=channels,
|
| 77 |
+
out_channels=channels,
|
| 78 |
+
kernel_size=kernel_size,
|
| 79 |
+
padding=0,
|
| 80 |
+
groups=channels,
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 84 |
+
# x: (B, T, H) -> (B, H, T)
|
| 85 |
+
x_c = x.transpose(1, 2)
|
| 86 |
+
# left-pad con zeri per causalità
|
| 87 |
+
x_c = F.pad(x_c, (self.pad, 0))
|
| 88 |
+
y = self.conv(x_c)
|
| 89 |
+
y = y.transpose(1, 2)
|
| 90 |
+
return y
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class ChannelAttention(nn.Module):
|
| 94 |
+
"""
|
| 95 |
+
Attenzione per-canale (tipo SE) per token.
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
def __init__(self, channels: int, reduction: int = 4):
|
| 99 |
+
super().__init__()
|
| 100 |
+
hidden = max(channels // reduction, 1)
|
| 101 |
+
self.ln = nn.LayerNorm(channels)
|
| 102 |
+
self.fc1 = nn.Linear(channels, hidden)
|
| 103 |
+
self.fc2 = nn.Linear(hidden, channels)
|
| 104 |
+
|
| 105 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 106 |
+
g = self.ln(x)
|
| 107 |
+
g = F.gelu(self.fc1(g))
|
| 108 |
+
g = torch.sigmoid(self.fc2(g))
|
| 109 |
+
return x * g
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
class Fp32LayerNorm(nn.Module):
|
| 113 |
+
"""
|
| 114 |
+
LayerNorm in float32 per stabilità numerica, castando avanti/indietro.
|
| 115 |
+
I parametri rimangono in float32.
|
| 116 |
+
"""
|
| 117 |
+
|
| 118 |
+
def __init__(self, normalized_shape: int, eps: float = 1e-5):
|
| 119 |
+
super().__init__()
|
| 120 |
+
self.ln = nn.LayerNorm(normalized_shape, eps=eps)
|
| 121 |
+
self.ln.to(dtype=torch.float32)
|
| 122 |
+
|
| 123 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 124 |
+
orig_dtype = x.dtype
|
| 125 |
+
# Disable autocast to prevent BF16/FP16 from being injected into LayerNorm
|
| 126 |
+
if x.is_cuda:
|
| 127 |
+
with torch.autocast(device_type="cuda", enabled=False):
|
| 128 |
+
y = self.ln(x.to(torch.float32))
|
| 129 |
+
else:
|
| 130 |
+
with torch.autocast(device_type="cpu", enabled=False):
|
| 131 |
+
y = self.ln(x.to(torch.float32))
|
| 132 |
+
return y.to(orig_dtype)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
# --- Rami base per il PolymorphicMLP ---
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class SwigluMLP(nn.Module):
|
| 139 |
+
def __init__(self, hidden_size: int, mlp_mult: float):
|
| 140 |
+
super().__init__()
|
| 141 |
+
mlp_dim = int(round(mlp_mult * hidden_size))
|
| 142 |
+
self.mlp_dim = mlp_dim
|
| 143 |
+
self.up = nn.Linear(hidden_size, 2 * mlp_dim)
|
| 144 |
+
self.down = nn.Linear(mlp_dim, hidden_size)
|
| 145 |
+
|
| 146 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 147 |
+
up = self.up(x)
|
| 148 |
+
a, b = up.split(self.mlp_dim, dim=-1)
|
| 149 |
+
y = F.silu(a) * b
|
| 150 |
+
return self.down(y)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class GluMLP(nn.Module):
|
| 154 |
+
def __init__(self, hidden_size: int, mlp_mult: float):
|
| 155 |
+
super().__init__()
|
| 156 |
+
mlp_dim = int(round(mlp_mult * hidden_size))
|
| 157 |
+
self.mlp_dim = mlp_dim
|
| 158 |
+
self.up = nn.Linear(hidden_size, 2 * mlp_dim)
|
| 159 |
+
self.down = nn.Linear(mlp_dim, hidden_size)
|
| 160 |
+
|
| 161 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 162 |
+
up = self.up(x)
|
| 163 |
+
a, b = up.split(self.mlp_dim, dim=-1)
|
| 164 |
+
y = torch.sigmoid(a) * b
|
| 165 |
+
return self.down(y)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
class DepthwiseConvBranch(nn.Module):
|
| 169 |
+
def __init__(self, hidden_size: int, mlp_mult: float = 4.0):
|
| 170 |
+
super().__init__()
|
| 171 |
+
mlp_dim = int(round(mlp_mult * hidden_size))
|
| 172 |
+
self.dw = DepthwiseCausalConv1d(hidden_size, kernel_size=3)
|
| 173 |
+
self.expand = nn.Linear(hidden_size, mlp_dim)
|
| 174 |
+
self.act = nn.GELU()
|
| 175 |
+
self.contract = nn.Linear(mlp_dim, hidden_size)
|
| 176 |
+
|
| 177 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 178 |
+
y = self.dw(x)
|
| 179 |
+
y = self.expand(y)
|
| 180 |
+
y = self.act(y)
|
| 181 |
+
return self.contract(y)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
class PolymorphicMLP(nn.Module):
|
| 185 |
+
"""
|
| 186 |
+
MLP polimorfico:
|
| 187 |
+
|
| 188 |
+
- Router: produce alpha (B, T, K)
|
| 189 |
+
- K rami base in una ModuleList (es. SwiGLU, GLU, depthwise-conv)
|
| 190 |
+
- Output: somma pesata dei rami
|
| 191 |
+
- Opzionale ChannelAttention
|
| 192 |
+
- Espone:
|
| 193 |
+
- last_alpha (B, T, K) per logging
|
| 194 |
+
- last_aux (entropia normalizzata media) per aux-loss
|
| 195 |
+
- force_func: se >= 0, forza un solo ramo (debug / training per ramo)
|
| 196 |
+
"""
|
| 197 |
+
|
| 198 |
+
def __init__(
|
| 199 |
+
self,
|
| 200 |
+
hidden_size: int,
|
| 201 |
+
mlp_mult: float = 4.0,
|
| 202 |
+
num_funcs: int = 3,
|
| 203 |
+
router_dim: Optional[int] = None,
|
| 204 |
+
dropout: float = 0.0,
|
| 205 |
+
use_channel_attention: bool = False,
|
| 206 |
+
router_tau: float = 1.0,
|
| 207 |
+
):
|
| 208 |
+
super().__init__()
|
| 209 |
+
assert num_funcs >= 1, "PolymorphicMLP richiede almeno 1 funzione di base"
|
| 210 |
+
self.hidden_size = hidden_size
|
| 211 |
+
self.mlp_mult = mlp_mult
|
| 212 |
+
self.num_funcs = num_funcs
|
| 213 |
+
|
| 214 |
+
# Router
|
| 215 |
+
r_dim = router_dim or hidden_size
|
| 216 |
+
self.router = nn.Sequential(
|
| 217 |
+
nn.Linear(hidden_size, r_dim),
|
| 218 |
+
nn.GELU(),
|
| 219 |
+
nn.Linear(r_dim, num_funcs),
|
| 220 |
+
)
|
| 221 |
+
self.router_tau = router_tau
|
| 222 |
+
|
| 223 |
+
# Inizializza router con pesi piccoli per distribuzioni più uniformi
|
| 224 |
+
for m in self.router.modules():
|
| 225 |
+
if isinstance(m, nn.Linear):
|
| 226 |
+
nn.init.normal_(m.weight, mean=0.0, std=0.02)
|
| 227 |
+
if m.bias is not None:
|
| 228 |
+
nn.init.zeros_(m.bias)
|
| 229 |
+
|
| 230 |
+
# Rami base (primi 3: compatibili con la tua v1)
|
| 231 |
+
funcs: List[nn.Module] = []
|
| 232 |
+
if num_funcs >= 1:
|
| 233 |
+
funcs.append(SwigluMLP(hidden_size, mlp_mult))
|
| 234 |
+
if num_funcs >= 2:
|
| 235 |
+
funcs.append(GluMLP(hidden_size, mlp_mult))
|
| 236 |
+
if num_funcs >= 3:
|
| 237 |
+
funcs.append(DepthwiseConvBranch(hidden_size, mlp_mult))
|
| 238 |
+
# Se in futuro alzi num_funcs > 3, dovrai aggiungere nuovi rami qui
|
| 239 |
+
# (es. un MLP più profondo, un branch più conv-heavy, ecc.)
|
| 240 |
+
while len(funcs) < num_funcs:
|
| 241 |
+
funcs.append(SwigluMLP(hidden_size, mlp_mult)) # fallback: extra-swiglu
|
| 242 |
+
|
| 243 |
+
self.funcs = nn.ModuleList(funcs)
|
| 244 |
+
|
| 245 |
+
self.dropout = nn.Dropout(dropout)
|
| 246 |
+
self.use_channel_attention = use_channel_attention
|
| 247 |
+
self.chan_attn = ChannelAttention(hidden_size) if use_channel_attention else None
|
| 248 |
+
|
| 249 |
+
# Monitoring
|
| 250 |
+
self.last_alpha: Optional[torch.Tensor] = None
|
| 251 |
+
self.last_aux: Optional[torch.Tensor] = None
|
| 252 |
+
|
| 253 |
+
# Forzatura di un singolo ramo (es. per debug / fasi speciali)
|
| 254 |
+
self.force_func: int = -1
|
| 255 |
+
|
| 256 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 257 |
+
# Router: (B, T, H) -> (B, T, K)
|
| 258 |
+
logits = self.router(x)
|
| 259 |
+
tau = float(self.router_tau) if self.router_tau is not None and self.router_tau > 0.0 else 1.0
|
| 260 |
+
alpha = F.softmax(logits / tau, dim=-1)
|
| 261 |
+
|
| 262 |
+
# Forza un solo ramo se richiesto
|
| 263 |
+
if self.force_func is not None and self.force_func >= 0 and self.force_func < self.num_funcs:
|
| 264 |
+
one_hot = torch.zeros_like(alpha)
|
| 265 |
+
one_hot[..., self.force_func] = 1.0
|
| 266 |
+
alpha = one_hot
|
| 267 |
+
|
| 268 |
+
# Rami
|
| 269 |
+
ys = [f(x) for f in self.funcs] # lista di (B, T, H)
|
| 270 |
+
y_stack = torch.stack(ys, dim=2) # (B, T, K, H)
|
| 271 |
+
|
| 272 |
+
alpha_exp = alpha.unsqueeze(-1) # (B, T, K, 1)
|
| 273 |
+
y = (alpha_exp * y_stack).sum(dim=2) # (B, T, H)
|
| 274 |
+
|
| 275 |
+
if self.use_channel_attention and self.chan_attn is not None:
|
| 276 |
+
y = self.chan_attn(y)
|
| 277 |
+
|
| 278 |
+
y = self.dropout(y)
|
| 279 |
+
|
| 280 |
+
# Monitoring
|
| 281 |
+
self.last_alpha = alpha.detach()
|
| 282 |
+
|
| 283 |
+
self.last_aux = None
|
| 284 |
+
if self.training:
|
| 285 |
+
# Token-level entropy encourages mixing at each position
|
| 286 |
+
token_ent = router_aux_loss(alpha)
|
| 287 |
+
# Global entropy over mean usage encourages balanced branch usage overall
|
| 288 |
+
p = alpha.mean(dim=(0, 1)) # (K,)
|
| 289 |
+
ent = -(p * (p + 1e-9).log()).sum()
|
| 290 |
+
k = alpha.size(-1)
|
| 291 |
+
global_ent = ent / math.log(float(k))
|
| 292 |
+
# Combine both to stabilize early training and avoid collapse
|
| 293 |
+
self.last_aux = 0.5 * token_ent + 0.5 * global_ent
|
| 294 |
+
|
| 295 |
+
return y, alpha
|