| {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x792fb3a72b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x792fb3a72b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x792fb3a72c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x792fb3a72cb0>", "_build": "<function ActorCriticPolicy._build at 0x792fb3a72d40>", "forward": "<function ActorCriticPolicy.forward at 0x792fb3a72dd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x792fb3a72e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x792fb3a72ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x792fb3a72f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x792fb3a73010>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x792fb3a730a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x792fb3a73130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x792fb3c126c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710318975352107934, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAIt7w7Gq4/OVjGvYBAxL58zym8Ha3YvAAAAAAAAAAAE/kEvvcyDT59H9s8wL45vtE/Kb2iI6S9AAAAAAAAAAAaPOM9lFecP/ebFT+88Ay/39u0Pe3BGD4AAAAAAAAAAE2mmD0UGKS6u8JGNaLDmy+UYEe6LTI9tAAAgD8AAIA/8920PXtWqrpv5Ce874BjNQtHwrrQbL+0AACAPwAAgD9m9QE+oeyfPROFgr599S++6grsvPwYNr0AAAAAAAAAAAC6XjznISg+1dfIPCnuQb5KjVY8biE8uwAAAAAAAAAA02KTPjZoqj4iK8i+7V61vsS+B7zGSZy9AAAAAAAAAADNBKe8FBaVOYQEKrSGdrMvv/uPu5aklDMAAIA/AACAP5qkPz1ZH6w/mz5UPrnYxr6zG109XtyYvAAAAAAAAAAAgAlYPRKDoTzmFJa8p0y+vf+3iTzpgz69AAAAAAAAAADTwVA+uNqBOuorI71JHzi+06/GPEpogrsAAAAAAAAAAADqAL7s2/M8xCuUPqCYXr6l+Dw9ArqXOwAAAAAAAAAADTfdPVzXebpeUak38EM1M1QBcjshLMG2AACAPwAAgD/Dcb4+9vrPPrr3Qb4F2Y++9ODdPSMG4b0AAAAAAAAAAKaQbj7Se30/pkYqP8Qy7r4Tl40+rv/+PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/IspPRAryMAWyUS/iMAXSUR0CXst61b7j1dX2UKGgGR0Bx8wpTdcjaaAdNSgFoCEdAl7NVtO2y9nV9lChoBkdAcTi2bXpW3mgHS+xoCEdAl7ParBCUo3V9lChoBkdAcXeshxHXmWgHTRABaAhHQJe0Wr1dxAB1fZQoaAZHQHEgA2MsH0NoB00AAWgIR0CXtVxDb8FZdX2UKGgGR0BxfHPmgam5aAdNagFoCEdAl7W5bILgGnV9lChoBkdAcM4kUKzAvmgHS/RoCEdAl7dG1hLGrHV9lChoBkdAc4W5cTrVv2gHTQcBaAhHQJe3bKYAsCl1fZQoaAZHQHCWCN4qwyJoB00lAWgIR0CXt9dLxqfwdX2UKGgGR0Bviu3BpHqeaAdL8WgIR0CXuR9fCyhSdX2UKGgGR0BxiLGtITXbaAdL8GgIR0CXueXkHUtqdX2UKGgGR0BwVrujRD1HaAdNrwFoCEdAl7uyBkI5YHV9lChoBkdAcFDdld1Md2gHS/NoCEdAl7vkRSP2f3V9lChoBkdAcXWwDvE0i2gHTZkBaAhHQJe8t+SbH6x1fZQoaAZHQHDKGoR7JGRoB0v5aAhHQJe9K42CNCJ1fZQoaAZHQHKI9xhlUZNoB00HAWgIR0CXvSsD4gzQdX2UKGgGR0BxbIS5AhStaAdN3gFoCEdAl73PT5O8CnV9lChoBkdAZD4M6RyOrGgHTegDaAhHQJe+DsC1Z1V1fZQoaAZHQHMPLdepn6FoB01EAWgIR0CXvk8CgbqAdX2UKGgGR0ByBAp1A7gbaAdL+WgIR0CXvmsxO+IudX2UKGgGR0BwoYPf8/D+aAdNEAFoCEdAl77KSTyJ9HV9lChoBkdAcbqfBvaURmgHS9doCEdAl77SiqQzUXV9lChoBkdAbm0/ag261GgHS99oCEdAl79ektVaOnV9lChoBkdAcOj4LCvX9WgHTRcBaAhHQJfAcW56MR91fZQoaAZHQHG/iZv1lGxoB0vjaAhHQJfBHuG9Htp1fZQoaAZHQHCXpswco6VoB0vQaAhHQJfCTKSxJNF1fZQoaAZHQG9YEVN5+phoB0veaAhHQJfFKp84Pwx1fZQoaAZHQHEfIBV+7UZoB0v9aAhHQJfFYwsXizd1fZQoaAZHQHEvqT4cm0FoB00PAWgIR0CXxaBEroW6dX2UKGgGR0BwUIY64lQeaAdL5GgIR0CXxb7yhBZ7dX2UKGgGR0BuUGyRjjJdaAdNCQFoCEdAl8Xj67/XG3V9lChoBkdAcEl1R+BpYmgHS/9oCEdAl8btZq20A3V9lChoBkdAcuhYv38GcGgHTRcBaAhHQJfHErBj4Hp1fZQoaAZHQHBWsURFqi5oB00JAWgIR0CXx8sA/9pAdX2UKGgGR0By3myfL9uQaAdNAwFoCEdAl8hUSIxgzHV9lChoBkdAcc9UH6dlNGgHTRwBaAhHQJfIfo3aSLZ1fZQoaAZHQGu6rzwtrbhoB02oA2gIR0CXyUx46fapdX2UKGgGR0BwUk8xKxs3aAdNBwFoCEdAl8nSZF5OanV9lChoBkdAbdyIE8q4IGgHS+5oCEdAl8r+b3Gn43V9lChoBkdAcPo+kP+XJGgHS+NoCEdAl84y3CsOonV9lChoBkdAcG8wYcebNWgHS+JoCEdAl88T7l7tzHV9lChoBkdAcBl2Jzkp7WgHS/FoCEdAl887GaQV9HV9lChoBkdAcISmQbMot2gHS/loCEdAl8/ksJ6Y3XV9lChoBkdAcN7rjHXEqGgHTYEBaAhHQJfQmB06o2p1fZQoaAZHQHCTe8Gs3hpoB0vuaAhHQJfRET/Q0Gh1fZQoaAZHQHFAfYBeXzFoB00QAWgIR0CX0Tg62fCidX2UKGgGR0Bvg2+sYEW7aAdL8GgIR0CX0V0SAYpEdX2UKGgGR0BzFikCV8kVaAdL02gIR0CX0ddxyXD4dX2UKGgGR0BuM10aIeo2aAdL4WgIR0CX1FIsAeaKdX2UKGgGR0Bw+j4cm0E6aAdNDgFoCEdAl9VYBq9GqnV9lChoBkdAcACbKzRhMWgHS91oCEdAl9Vz9S/CZXV9lChoBkdAbf2l9jPOZGgHTTYBaAhHQJfV0CHRCyB1fZQoaAZHQG4LMgdOqNpoB0vuaAhHQJfZOO0b9611fZQoaAZHQHG3ylrM1TBoB0v+aAhHQJfZtGrjo6l1fZQoaAZHQHB2BAWznihoB0vhaAhHQJfZyhIvrW11fZQoaAZHQHDyd2LYPG1oB0vgaAhHQJfaFxtHhCN1fZQoaAZHQHJGOmNzbN9oB0vqaAhHQJfajO8kD6p1fZQoaAZHQHIEu76Hj6xoB0vkaAhHQJfeS1G9YfZ1fZQoaAZHQG7lQ6hg3LpoB00PAWgIR0CX3vXg9/z8dX2UKGgGR0Bdw2Y8dPtVaAdN6ANoCEdAl9+o1P3ztnV9lChoBkdAcUR3Roh6jWgHS/doCEdAl9+yjUNKAnV9lChoBkdAccHSmIj4YmgHTawBaAhHQJfgNkhA4XJ1fZQoaAZHQHGEpSBK+SNoB00yAWgIR0CX4WE5QxetdX2UKGgGR0Bxs6ErXlKcaAdNpgFoCEdAl+IztLL6lHV9lChoBkdAZEd2f029+WgHTegDaAhHQJfiPhWHUMJ1fZQoaAZHQHD9TxG2CuloB00EAWgIR0CX40c+qzZ6dX2UKGgGR0BuV9efI0ZWaAdL9mgIR0CX4/QJHAh0dX2UKGgGR0BxfxSflIVeaAdNUQFoCEdAl+ZRPO6d2HV9lChoBkdAbripWmxdIGgHS+1oCEdAl+bRz/6wdXV9lChoBkdAcA1mIj4YamgHS+poCEdAl+f9RWLgoHV9lChoBkdAc1vHiFTNuGgHTXYBaAhHQJfoOXhOxjd1fZQoaAZHQHIs1l05lvtoB0v2aAhHQJfoaePJaJR1fZQoaAZHQHKF65wwTM9oB00PAWgIR0CX6epqASWadX2UKGgGR0BwNtwgkka/aAdL7WgIR0CX6fTpgTh6dX2UKGgGR0BtI/GQ0XP7aAdL42gIR0CX6mbmlqJudX2UKGgGR0ByrruXu3MIaAdNXgFoCEdAl+u5L26ClXV9lChoBkdAbht5ftx+8WgHS+xoCEdAl+vvCIk7fnV9lChoBkdAbzPtZ3cHnmgHS+ZoCEdAl+yA44p+dHV9lChoBkdAYY48ZDRc/2gHTegDaAhHQJfvS3KB/Zx1fZQoaAZHQHDfVY6nzhBoB019AWgIR0CX8CpYcNpedX2UKGgGR0ByJ0AMlTm5aAdNNwFoCEdAl/I3qu8sc3V9lChoBkdAbxS+PBBRh2gHTQ8BaAhHQJfyQnH/9511fZQoaAZHQHB8Qosqaw5oB00FAWgIR0CX8k5R0lqrdX2UKGgGR0ByaLy9VWCFaAdNFAFoCEdAl/KoGD+R5nV9lChoBkdAcsTOI68xsWgHTU4BaAhHQJfzlOP/7zl1fZQoaAZHQG64EgwGnoBoB0v/aAhHQJfznykKu0V1fZQoaAZHQHEIVurIYFdoB0vhaAhHQJf0MMnZ00Z1fZQoaAZHQHBB99tuUEBoB00JAWgIR0CX9F5N47iidX2UKGgGR0ByWidEsrd4aAdNxQJoCEdAl/SAnpjc23V9lChoBkdAcYZRLsa86GgHTSgBaAhHQJf04G+sYEZ1fZQoaAZHQHFZXwXqJMxoB0vwaAhHQJf1SZH/cWV1fZQoaAZHQHKzBcAzYVZoB00WAWgIR0CX9ehz/6wddX2UKGgGR0BkLQUxmCiAaAdN6ANoCEdAl/XzJhfBvnV9lChoBkdAb8YKUFB6bGgHS8poCEdAl/Y7S7Xg+HV9lChoBkdAPMIxxkupTGgHS8VoCEdAl/anjp9qlHV9lChoBkdAZZ20WM0gsGgHTegDaAhHQJf27w4KhL51fZQoaAZHQGvG5nDiwStoB0v1aAhHQJf5a8mKIi11fZQoaAZHQHFBdXko4MpoB0vcaAhHQJf5w7FKkEd1fZQoaAZHQHKAcOTaCcxoB00AAWgIR0CX+dYQarFPdX2UKGgGR0BwhUVpKzzFaAdL+WgIR0CX+etga3qidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |