Update weights and modeling code to latest version
Browse files- __init__.py +56 -0
- config.json +30 -6
- configuration_lucaone.py +102 -0
- model-00001-of-00002.safetensors +2 -2
- model-00002-of-00002.safetensors +2 -2
- model.safetensors.index.json +351 -345
- modeling_lucaone.py +1344 -0
- tokenization_lucaone.py +432 -0
- tokenizer_config.json +9 -3
__init__.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# encoding: utf-8
|
| 3 |
+
'''
|
| 4 |
+
@license: (C) Copyright 2025, Hey.
|
| 5 |
+
@author: Hey
|
| 6 |
+
@email: [email protected]
|
| 7 |
+
@tel: 137****6540
|
| 8 |
+
@datetime: 2025/12/30 11:32
|
| 9 |
+
@project: lucaone
|
| 10 |
+
@file: configuration_lucaone
|
| 11 |
+
@desc: configuration_lucaone
|
| 12 |
+
'''
|
| 13 |
+
|
| 14 |
+
from .configuration_lucaone import LucaGPLMConfig
|
| 15 |
+
from .tokenization_lucaone import LucaGPLMTokenizer, LucaGPLMTokenizerFast
|
| 16 |
+
from .modeling_lucaone import (
|
| 17 |
+
LucaGPLMModel,
|
| 18 |
+
LucaGPLMPreTrainedModel,
|
| 19 |
+
LucaGPLMForMaskedLM,
|
| 20 |
+
LucaGPLMForSequenceClassification,
|
| 21 |
+
LucaGPLMForTokenClassification
|
| 22 |
+
)
|
| 23 |
+
from transformers import (
|
| 24 |
+
AutoConfig,
|
| 25 |
+
AutoModel,
|
| 26 |
+
AutoModelForMaskedLM,
|
| 27 |
+
AutoModelForSequenceClassification,
|
| 28 |
+
AutoModelForTokenClassification
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
__all__ = [
|
| 32 |
+
"LucaGPLMConfig",
|
| 33 |
+
"LucaGPLMModel",
|
| 34 |
+
"LucaGPLMPreTrainedModel",
|
| 35 |
+
"LucaGPLMTokenizer",
|
| 36 |
+
"LucaGPLMTokenizerFast",
|
| 37 |
+
"LucaGPLMForMaskedLM",
|
| 38 |
+
"LucaGPLMForSequenceClassification",
|
| 39 |
+
"LucaGPLMForTokenClassification"
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# 1. 注册配置类 (必选)
|
| 44 |
+
AutoConfig.register("lucaone", LucaGPLMConfig)
|
| 45 |
+
|
| 46 |
+
# 2. 注册基础模型 (用于 AutoModel.from_pretrained)
|
| 47 |
+
AutoModel.register(LucaGPLMConfig, LucaGPLMModel)
|
| 48 |
+
|
| 49 |
+
# 3. 注册序列分类模型 (用于 AutoModelForSequenceClassification)
|
| 50 |
+
AutoModelForSequenceClassification.register(LucaGPLMConfig, LucaGPLMForSequenceClassification)
|
| 51 |
+
|
| 52 |
+
# 4. 注册 Token 分类模型 (用于 AutoModelForTokenClassification)
|
| 53 |
+
AutoModelForTokenClassification.register(LucaGPLMConfig, LucaGPLMForTokenClassification)
|
| 54 |
+
|
| 55 |
+
# 5. 注册掩码语言模型 (用于 AutoModelForMaskedLM)
|
| 56 |
+
AutoModelForMaskedLM.register(LucaGPLMConfig, LucaGPLMForMaskedLM)
|
config.json
CHANGED
|
@@ -1,30 +1,54 @@
|
|
| 1 |
{
|
| 2 |
"alphabet": "gene_prot",
|
| 3 |
"architectures": [
|
| 4 |
-
"
|
| 5 |
],
|
| 6 |
"attention_probs_dropout_prob": 0.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"classifier_dropout_prob": 0.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
"embed_scale": 1.0,
|
|
|
|
| 9 |
"ffn_dim": 10240,
|
|
|
|
| 10 |
"hidden_dropout_prob": 0.0,
|
| 11 |
"hidden_size": 2560,
|
| 12 |
"ignore_index": -100,
|
| 13 |
"initializer_range": 0.02,
|
| 14 |
"layer_norm_eps": 1e-12,
|
| 15 |
-
"
|
| 16 |
-
"
|
|
|
|
| 17 |
"no_position_embeddings": true,
|
| 18 |
"no_token_type_embeddings": false,
|
| 19 |
"num_attention_heads": 40,
|
| 20 |
"num_hidden_layers": 20,
|
| 21 |
"pad_token_id": 0,
|
| 22 |
-
"
|
| 23 |
-
"
|
|
|
|
|
|
|
| 24 |
"token_dropout": false,
|
| 25 |
"torch_dtype": "float32",
|
| 26 |
-
"transformers_version": "4.
|
| 27 |
"type_vocab_size": 2,
|
|
|
|
| 28 |
"use_embed_layer_norm": false,
|
| 29 |
"use_last_layer_norm": true,
|
| 30 |
"vocab_size": 39
|
|
|
|
| 1 |
{
|
| 2 |
"alphabet": "gene_prot",
|
| 3 |
"architectures": [
|
| 4 |
+
"LucaGPLMForMaskedLM"
|
| 5 |
],
|
| 6 |
"attention_probs_dropout_prob": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_lucaone.LucaGPLMConfig",
|
| 9 |
+
"AutoModel": "modeling_lucaone.LucaGPLMModel",
|
| 10 |
+
"AutoModelForMaskedLM": "modeling_lucaone.LucaGPLMForMaskedLM",
|
| 11 |
+
"AutoModelForSequenceClassification": "modeling_lucaone.LucaGPLMForSequenceClassification",
|
| 12 |
+
"AutoModelForTokenClassification": "modeling_lucaone.LucaGPLMForTokenClassification",
|
| 13 |
+
"AutoTokenizer": [
|
| 14 |
+
"tokenization_lucaone.LucaGPLMTokenizer",
|
| 15 |
+
null
|
| 16 |
+
]
|
| 17 |
+
},
|
| 18 |
+
"bos_token_id": 2,
|
| 19 |
"classifier_dropout_prob": 0.0,
|
| 20 |
+
"classifier_loss_reduction": "mean",
|
| 21 |
+
"classifier_loss_type": "cross_entropy",
|
| 22 |
+
"classifier_num_labels": -1,
|
| 23 |
+
"classifier_pooling_type": "value_attention",
|
| 24 |
+
"classifier_pos_weight": 1.0,
|
| 25 |
+
"classifier_weight": null,
|
| 26 |
"embed_scale": 1.0,
|
| 27 |
+
"eos_token_id": 3,
|
| 28 |
"ffn_dim": 10240,
|
| 29 |
+
"hidden_act": "gelu",
|
| 30 |
"hidden_dropout_prob": 0.0,
|
| 31 |
"hidden_size": 2560,
|
| 32 |
"ignore_index": -100,
|
| 33 |
"initializer_range": 0.02,
|
| 34 |
"layer_norm_eps": 1e-12,
|
| 35 |
+
"mask_token_id": 4,
|
| 36 |
+
"max_position_embeddings": 4096,
|
| 37 |
+
"model_type": "lucaone",
|
| 38 |
"no_position_embeddings": true,
|
| 39 |
"no_token_type_embeddings": false,
|
| 40 |
"num_attention_heads": 40,
|
| 41 |
"num_hidden_layers": 20,
|
| 42 |
"pad_token_id": 0,
|
| 43 |
+
"sep_token_id": 3,
|
| 44 |
+
"task_level": "seq_level",
|
| 45 |
+
"task_type": "embedding",
|
| 46 |
+
"tie_word_embeddings": false,
|
| 47 |
"token_dropout": false,
|
| 48 |
"torch_dtype": "float32",
|
| 49 |
+
"transformers_version": "4.41.2",
|
| 50 |
"type_vocab_size": 2,
|
| 51 |
+
"unk_token_id": 1,
|
| 52 |
"use_embed_layer_norm": false,
|
| 53 |
"use_last_layer_norm": true,
|
| 54 |
"vocab_size": 39
|
configuration_lucaone.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# encoding: utf-8
|
| 3 |
+
'''
|
| 4 |
+
@license: (C) Copyright 2025, Hey.
|
| 5 |
+
@author: Hey
|
| 6 |
+
@email: [email protected]
|
| 7 |
+
@tel: 137****6540
|
| 8 |
+
@datetime: 2025/12/30 11:34
|
| 9 |
+
@project: lucaone
|
| 10 |
+
@file: tokenization_lucaone
|
| 11 |
+
@desc: tokenization_lucaone
|
| 12 |
+
'''
|
| 13 |
+
|
| 14 |
+
from typing import Literal
|
| 15 |
+
from transformers import PretrainedConfig
|
| 16 |
+
|
| 17 |
+
class LucaGPLMConfig(PretrainedConfig):
|
| 18 |
+
model_type = "lucaone"
|
| 19 |
+
|
| 20 |
+
def __init__(
|
| 21 |
+
self,
|
| 22 |
+
vocab_size: int = 39,
|
| 23 |
+
pad_token_id: int = 0,
|
| 24 |
+
unk_token_id: int = 1,
|
| 25 |
+
bos_token_id: int = 2,
|
| 26 |
+
eos_token_id: int = 3,
|
| 27 |
+
sep_token_id: int = 3,
|
| 28 |
+
mask_token_id: int = 4,
|
| 29 |
+
hidden_act: str = "gelu",
|
| 30 |
+
max_position_embeddings: int = 4096,
|
| 31 |
+
type_vocab_size: int = 2,
|
| 32 |
+
num_hidden_layers: int = 20,
|
| 33 |
+
num_attention_heads: int = 40,
|
| 34 |
+
hidden_size: int = 2560,
|
| 35 |
+
ffn_dim: int = 10240,
|
| 36 |
+
no_position_embeddings: bool = True,
|
| 37 |
+
no_token_type_embeddings: bool = False,
|
| 38 |
+
alphabet: str = "gene_prot",
|
| 39 |
+
token_dropout: bool = False,
|
| 40 |
+
attention_probs_dropout_prob: float = 0.0,
|
| 41 |
+
hidden_dropout_prob: float = 0.0,
|
| 42 |
+
use_embed_layer_norm: bool = False,
|
| 43 |
+
use_last_layer_norm: bool = True,
|
| 44 |
+
embed_scale: float = 1.0,
|
| 45 |
+
ignore_index: int = -100,
|
| 46 |
+
layer_norm_eps: float = 1e-12,
|
| 47 |
+
initializer_range: float = 0.02,
|
| 48 |
+
task_level: Literal["seq_level", "token_level"] = "seq_level",
|
| 49 |
+
task_type: Literal["embedding", "mlm", "multi_class", "binary_class", "regression", "multi_label"] = "embedding",
|
| 50 |
+
classifier_num_labels: int = -1,
|
| 51 |
+
classifier_dropout_prob: float = 0.1,
|
| 52 |
+
classifier_pooling_type: Literal["cls", "value_attention", "context_attention", "mean"] = "value_attention",
|
| 53 |
+
classifier_loss_type: Literal["binary_cross_entropy", "cross_entropy", "mse", "mae"] = "cross_entropy",
|
| 54 |
+
classifier_loss_reduction: Literal["mean", "sum", "none"] = "mean",
|
| 55 |
+
classifier_pos_weight: float=1.0,
|
| 56 |
+
classifier_weight: list=None,
|
| 57 |
+
tie_word_embeddings: bool=True,
|
| 58 |
+
**kwargs
|
| 59 |
+
):
|
| 60 |
+
super().__init__(
|
| 61 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 62 |
+
pad_token_id=pad_token_id,
|
| 63 |
+
**kwargs
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
self.alphabet = alphabet
|
| 67 |
+
self.vocab_size = vocab_size
|
| 68 |
+
self.max_position_embeddings = max_position_embeddings
|
| 69 |
+
self.type_vocab_size = type_vocab_size
|
| 70 |
+
self.no_token_type_embeddings = no_token_type_embeddings
|
| 71 |
+
self.no_position_embeddings = no_position_embeddings
|
| 72 |
+
self.num_hidden_layers = num_hidden_layers
|
| 73 |
+
self.hidden_size = hidden_size
|
| 74 |
+
self.num_attention_heads = num_attention_heads
|
| 75 |
+
self.ffn_dim = ffn_dim
|
| 76 |
+
self.token_dropout = token_dropout
|
| 77 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 78 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 79 |
+
self.classifier_dropout_prob = classifier_dropout_prob
|
| 80 |
+
self.ignore_index = ignore_index
|
| 81 |
+
self.use_embed_layer_norm = use_embed_layer_norm
|
| 82 |
+
self.use_last_layer_norm = use_last_layer_norm
|
| 83 |
+
self.embed_scale = embed_scale
|
| 84 |
+
self.layer_norm_eps = layer_norm_eps
|
| 85 |
+
self.initializer_range = initializer_range
|
| 86 |
+
self.unk_token_id = unk_token_id
|
| 87 |
+
self.bos_token_id = bos_token_id
|
| 88 |
+
self.eos_token_id = eos_token_id
|
| 89 |
+
self.sep_token_id = sep_token_id
|
| 90 |
+
self.mask_token_id = mask_token_id
|
| 91 |
+
self.hidden_act = hidden_act
|
| 92 |
+
self.classifier_num_labels = classifier_num_labels
|
| 93 |
+
self.classifier_pooling_type = classifier_pooling_type
|
| 94 |
+
self.task_level = task_level
|
| 95 |
+
self.task_type = task_type
|
| 96 |
+
self.classifier_loss_type = classifier_loss_type
|
| 97 |
+
self.classifier_loss_reduction = classifier_loss_reduction
|
| 98 |
+
self.classifier_pos_weight = classifier_pos_weight
|
| 99 |
+
self.classifier_weight = classifier_weight
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
__all__ = ["LucaGPLMConfig"]
|
model-00001-of-00002.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f4f62f17030bbf8353cfabd8d8291688b9b7a6632d55710178651b4ea8a529c6
|
| 3 |
+
size 4930881120
|
model-00002-of-00002.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1b2b9ec5fa2159a09c671e5d0dde6c1ea9537219f5ceab51a53e189cb79c5fb5
|
| 3 |
+
size 1390366196
|
model.safetensors.index.json
CHANGED
|
@@ -1,351 +1,357 @@
|
|
| 1 |
{
|
| 2 |
"metadata": {
|
| 3 |
-
"total_size":
|
| 4 |
},
|
| 5 |
"weight_map": {
|
| 6 |
-
"
|
| 7 |
-
"
|
| 8 |
-
"
|
| 9 |
-
"
|
| 10 |
-
"
|
| 11 |
-
"
|
| 12 |
-
"
|
| 13 |
-
"
|
| 14 |
-
"encoder.
|
| 15 |
-
"encoder.
|
| 16 |
-
"encoder.layers.0.
|
| 17 |
-
"encoder.layers.0.
|
| 18 |
-
"encoder.layers.0.
|
| 19 |
-
"encoder.layers.0.
|
| 20 |
-
"encoder.layers.0.
|
| 21 |
-
"encoder.layers.0.
|
| 22 |
-
"encoder.layers.0.
|
| 23 |
-
"encoder.layers.0.
|
| 24 |
-
"encoder.layers.0.self_attn.
|
| 25 |
-
"encoder.layers.0.self_attn.
|
| 26 |
-
"encoder.layers.0.self_attn.
|
| 27 |
-
"encoder.layers.
|
| 28 |
-
"encoder.layers.
|
| 29 |
-
"encoder.layers.
|
| 30 |
-
"encoder.layers.
|
| 31 |
-
"encoder.layers.
|
| 32 |
-
"encoder.layers.
|
| 33 |
-
"encoder.layers.1.
|
| 34 |
-
"encoder.layers.1.
|
| 35 |
-
"encoder.layers.1.
|
| 36 |
-
"encoder.layers.1.
|
| 37 |
-
"encoder.layers.1.
|
| 38 |
-
"encoder.layers.1.
|
| 39 |
-
"encoder.layers.1.
|
| 40 |
-
"encoder.layers.1.
|
| 41 |
-
"encoder.layers.1.self_attn.
|
| 42 |
-
"encoder.layers.1.self_attn.
|
| 43 |
-
"encoder.layers.1.self_attn.
|
| 44 |
-
"encoder.layers.
|
| 45 |
-
"encoder.layers.
|
| 46 |
-
"encoder.layers.
|
| 47 |
-
"encoder.layers.
|
| 48 |
-
"encoder.layers.
|
| 49 |
-
"encoder.layers.
|
| 50 |
-
"encoder.layers.10.
|
| 51 |
-
"encoder.layers.10.
|
| 52 |
-
"encoder.layers.10.
|
| 53 |
-
"encoder.layers.10.
|
| 54 |
-
"encoder.layers.10.
|
| 55 |
-
"encoder.layers.10.
|
| 56 |
-
"encoder.layers.10.
|
| 57 |
-
"encoder.layers.10.
|
| 58 |
-
"encoder.layers.10.self_attn.
|
| 59 |
-
"encoder.layers.10.self_attn.
|
| 60 |
-
"encoder.layers.10.self_attn.
|
| 61 |
-
"encoder.layers.
|
| 62 |
-
"encoder.layers.
|
| 63 |
-
"encoder.layers.
|
| 64 |
-
"encoder.layers.
|
| 65 |
-
"encoder.layers.
|
| 66 |
-
"encoder.layers.
|
| 67 |
-
"encoder.layers.11.
|
| 68 |
-
"encoder.layers.11.
|
| 69 |
-
"encoder.layers.11.
|
| 70 |
-
"encoder.layers.11.
|
| 71 |
-
"encoder.layers.11.
|
| 72 |
-
"encoder.layers.11.
|
| 73 |
-
"encoder.layers.11.
|
| 74 |
-
"encoder.layers.11.
|
| 75 |
-
"encoder.layers.11.self_attn.
|
| 76 |
-
"encoder.layers.11.self_attn.
|
| 77 |
-
"encoder.layers.11.self_attn.
|
| 78 |
-
"encoder.layers.
|
| 79 |
-
"encoder.layers.
|
| 80 |
-
"encoder.layers.
|
| 81 |
-
"encoder.layers.
|
| 82 |
-
"encoder.layers.
|
| 83 |
-
"encoder.layers.
|
| 84 |
-
"encoder.layers.12.
|
| 85 |
-
"encoder.layers.12.
|
| 86 |
-
"encoder.layers.12.
|
| 87 |
-
"encoder.layers.12.
|
| 88 |
-
"encoder.layers.12.
|
| 89 |
-
"encoder.layers.12.
|
| 90 |
-
"encoder.layers.12.
|
| 91 |
-
"encoder.layers.12.
|
| 92 |
-
"encoder.layers.12.self_attn.
|
| 93 |
-
"encoder.layers.12.self_attn.
|
| 94 |
-
"encoder.layers.12.self_attn.
|
| 95 |
-
"encoder.layers.
|
| 96 |
-
"encoder.layers.
|
| 97 |
-
"encoder.layers.
|
| 98 |
-
"encoder.layers.
|
| 99 |
-
"encoder.layers.
|
| 100 |
-
"encoder.layers.
|
| 101 |
-
"encoder.layers.13.
|
| 102 |
-
"encoder.layers.13.
|
| 103 |
-
"encoder.layers.13.
|
| 104 |
-
"encoder.layers.13.
|
| 105 |
-
"encoder.layers.13.
|
| 106 |
-
"encoder.layers.13.
|
| 107 |
-
"encoder.layers.13.
|
| 108 |
-
"encoder.layers.13.
|
| 109 |
-
"encoder.layers.13.self_attn.
|
| 110 |
-
"encoder.layers.13.self_attn.
|
| 111 |
-
"encoder.layers.13.self_attn.
|
| 112 |
-
"encoder.layers.
|
| 113 |
-
"encoder.layers.
|
| 114 |
-
"encoder.layers.
|
| 115 |
-
"encoder.layers.
|
| 116 |
-
"encoder.layers.
|
| 117 |
-
"encoder.layers.
|
| 118 |
-
"encoder.layers.14.
|
| 119 |
-
"encoder.layers.14.
|
| 120 |
-
"encoder.layers.14.
|
| 121 |
-
"encoder.layers.14.
|
| 122 |
-
"encoder.layers.14.
|
| 123 |
-
"encoder.layers.14.
|
| 124 |
-
"encoder.layers.14.
|
| 125 |
-
"encoder.layers.14.
|
| 126 |
-
"encoder.layers.14.self_attn.
|
| 127 |
-
"encoder.layers.14.self_attn.
|
| 128 |
-
"encoder.layers.14.self_attn.
|
| 129 |
-
"encoder.layers.
|
| 130 |
-
"encoder.layers.
|
| 131 |
-
"encoder.layers.
|
| 132 |
-
"encoder.layers.
|
| 133 |
-
"encoder.layers.
|
| 134 |
-
"encoder.layers.
|
| 135 |
-
"encoder.layers.15.
|
| 136 |
-
"encoder.layers.15.
|
| 137 |
-
"encoder.layers.15.
|
| 138 |
-
"encoder.layers.15.
|
| 139 |
-
"encoder.layers.15.
|
| 140 |
-
"encoder.layers.15.
|
| 141 |
-
"encoder.layers.15.
|
| 142 |
-
"encoder.layers.15.
|
| 143 |
-
"encoder.layers.15.self_attn.
|
| 144 |
-
"encoder.layers.15.self_attn.
|
| 145 |
-
"encoder.layers.15.self_attn.
|
| 146 |
-
"encoder.layers.
|
| 147 |
-
"encoder.layers.
|
| 148 |
-
"encoder.layers.
|
| 149 |
-
"encoder.layers.
|
| 150 |
-
"encoder.layers.
|
| 151 |
-
"encoder.layers.
|
| 152 |
-
"encoder.layers.16.
|
| 153 |
-
"encoder.layers.16.
|
| 154 |
-
"encoder.layers.16.
|
| 155 |
-
"encoder.layers.16.
|
| 156 |
-
"encoder.layers.16.
|
| 157 |
-
"encoder.layers.16.
|
| 158 |
-
"encoder.layers.16.
|
| 159 |
-
"encoder.layers.16.
|
| 160 |
-
"encoder.layers.16.self_attn.
|
| 161 |
-
"encoder.layers.16.self_attn.
|
| 162 |
-
"encoder.layers.16.self_attn.
|
| 163 |
-
"encoder.layers.
|
| 164 |
-
"encoder.layers.
|
| 165 |
-
"encoder.layers.
|
| 166 |
-
"encoder.layers.
|
| 167 |
-
"encoder.layers.
|
| 168 |
-
"encoder.layers.
|
| 169 |
-
"encoder.layers.17.
|
| 170 |
-
"encoder.layers.17.
|
| 171 |
-
"encoder.layers.17.
|
| 172 |
-
"encoder.layers.17.
|
| 173 |
-
"encoder.layers.17.
|
| 174 |
-
"encoder.layers.17.
|
| 175 |
-
"encoder.layers.17.
|
| 176 |
-
"encoder.layers.17.
|
| 177 |
-
"encoder.layers.17.self_attn.
|
| 178 |
-
"encoder.layers.17.self_attn.
|
| 179 |
-
"encoder.layers.17.self_attn.
|
| 180 |
-
"encoder.layers.
|
| 181 |
-
"encoder.layers.
|
| 182 |
-
"encoder.layers.
|
| 183 |
-
"encoder.layers.
|
| 184 |
-
"encoder.layers.
|
| 185 |
-
"encoder.layers.
|
| 186 |
-
"encoder.layers.18.
|
| 187 |
-
"encoder.layers.18.
|
| 188 |
-
"encoder.layers.18.
|
| 189 |
-
"encoder.layers.18.
|
| 190 |
-
"encoder.layers.18.
|
| 191 |
-
"encoder.layers.18.
|
| 192 |
-
"encoder.layers.18.
|
| 193 |
-
"encoder.layers.18.
|
| 194 |
-
"encoder.layers.18.self_attn.
|
| 195 |
-
"encoder.layers.18.self_attn.
|
| 196 |
-
"encoder.layers.18.self_attn.
|
| 197 |
-
"encoder.layers.
|
| 198 |
-
"encoder.layers.
|
| 199 |
-
"encoder.layers.
|
| 200 |
-
"encoder.layers.
|
| 201 |
-
"encoder.layers.
|
| 202 |
-
"encoder.layers.
|
| 203 |
-
"encoder.layers.19.
|
| 204 |
-
"encoder.layers.19.
|
| 205 |
-
"encoder.layers.19.
|
| 206 |
-
"encoder.layers.19.
|
| 207 |
-
"encoder.layers.19.
|
| 208 |
-
"encoder.layers.19.
|
| 209 |
-
"encoder.layers.19.
|
| 210 |
-
"encoder.layers.19.
|
| 211 |
-
"encoder.layers.19.self_attn.
|
| 212 |
-
"encoder.layers.19.self_attn.
|
| 213 |
-
"encoder.layers.19.self_attn.
|
| 214 |
-
"encoder.layers.
|
| 215 |
-
"encoder.layers.
|
| 216 |
-
"encoder.layers.
|
| 217 |
-
"encoder.layers.
|
| 218 |
-
"encoder.layers.
|
| 219 |
-
"encoder.layers.
|
| 220 |
-
"encoder.layers.2.
|
| 221 |
-
"encoder.layers.2.
|
| 222 |
-
"encoder.layers.2.
|
| 223 |
-
"encoder.layers.2.
|
| 224 |
-
"encoder.layers.2.
|
| 225 |
-
"encoder.layers.2.
|
| 226 |
-
"encoder.layers.2.
|
| 227 |
-
"encoder.layers.2.
|
| 228 |
-
"encoder.layers.2.self_attn.
|
| 229 |
-
"encoder.layers.2.self_attn.
|
| 230 |
-
"encoder.layers.2.self_attn.
|
| 231 |
-
"encoder.layers.
|
| 232 |
-
"encoder.layers.
|
| 233 |
-
"encoder.layers.
|
| 234 |
-
"encoder.layers.
|
| 235 |
-
"encoder.layers.
|
| 236 |
-
"encoder.layers.
|
| 237 |
-
"encoder.layers.3.
|
| 238 |
-
"encoder.layers.3.
|
| 239 |
-
"encoder.layers.3.
|
| 240 |
-
"encoder.layers.3.
|
| 241 |
-
"encoder.layers.3.
|
| 242 |
-
"encoder.layers.3.
|
| 243 |
-
"encoder.layers.3.
|
| 244 |
-
"encoder.layers.3.
|
| 245 |
-
"encoder.layers.3.self_attn.
|
| 246 |
-
"encoder.layers.3.self_attn.
|
| 247 |
-
"encoder.layers.3.self_attn.
|
| 248 |
-
"encoder.layers.
|
| 249 |
-
"encoder.layers.
|
| 250 |
-
"encoder.layers.
|
| 251 |
-
"encoder.layers.
|
| 252 |
-
"encoder.layers.
|
| 253 |
-
"encoder.layers.
|
| 254 |
-
"encoder.layers.4.
|
| 255 |
-
"encoder.layers.4.
|
| 256 |
-
"encoder.layers.4.
|
| 257 |
-
"encoder.layers.4.
|
| 258 |
-
"encoder.layers.4.
|
| 259 |
-
"encoder.layers.4.
|
| 260 |
-
"encoder.layers.4.
|
| 261 |
-
"encoder.layers.4.
|
| 262 |
-
"encoder.layers.4.self_attn.
|
| 263 |
-
"encoder.layers.4.self_attn.
|
| 264 |
-
"encoder.layers.4.self_attn.
|
| 265 |
-
"encoder.layers.
|
| 266 |
-
"encoder.layers.
|
| 267 |
-
"encoder.layers.
|
| 268 |
-
"encoder.layers.
|
| 269 |
-
"encoder.layers.
|
| 270 |
-
"encoder.layers.
|
| 271 |
-
"encoder.layers.5.
|
| 272 |
-
"encoder.layers.5.
|
| 273 |
-
"encoder.layers.5.
|
| 274 |
-
"encoder.layers.5.
|
| 275 |
-
"encoder.layers.5.
|
| 276 |
-
"encoder.layers.5.
|
| 277 |
-
"encoder.layers.5.
|
| 278 |
-
"encoder.layers.5.
|
| 279 |
-
"encoder.layers.5.self_attn.
|
| 280 |
-
"encoder.layers.5.self_attn.
|
| 281 |
-
"encoder.layers.5.self_attn.
|
| 282 |
-
"encoder.layers.
|
| 283 |
-
"encoder.layers.
|
| 284 |
-
"encoder.layers.
|
| 285 |
-
"encoder.layers.
|
| 286 |
-
"encoder.layers.
|
| 287 |
-
"encoder.layers.
|
| 288 |
-
"encoder.layers.6.
|
| 289 |
-
"encoder.layers.6.
|
| 290 |
-
"encoder.layers.6.
|
| 291 |
-
"encoder.layers.6.
|
| 292 |
-
"encoder.layers.6.
|
| 293 |
-
"encoder.layers.6.
|
| 294 |
-
"encoder.layers.6.
|
| 295 |
-
"encoder.layers.6.
|
| 296 |
-
"encoder.layers.6.self_attn.
|
| 297 |
-
"encoder.layers.6.self_attn.
|
| 298 |
-
"encoder.layers.6.self_attn.
|
| 299 |
-
"encoder.layers.
|
| 300 |
-
"encoder.layers.
|
| 301 |
-
"encoder.layers.
|
| 302 |
-
"encoder.layers.
|
| 303 |
-
"encoder.layers.
|
| 304 |
-
"encoder.layers.
|
| 305 |
-
"encoder.layers.7.
|
| 306 |
-
"encoder.layers.7.
|
| 307 |
-
"encoder.layers.7.
|
| 308 |
-
"encoder.layers.7.
|
| 309 |
-
"encoder.layers.7.
|
| 310 |
-
"encoder.layers.7.
|
| 311 |
-
"encoder.layers.7.
|
| 312 |
-
"encoder.layers.7.
|
| 313 |
-
"encoder.layers.7.self_attn.
|
| 314 |
-
"encoder.layers.7.self_attn.
|
| 315 |
-
"encoder.layers.7.self_attn.
|
| 316 |
-
"encoder.layers.
|
| 317 |
-
"encoder.layers.
|
| 318 |
-
"encoder.layers.
|
| 319 |
-
"encoder.layers.
|
| 320 |
-
"encoder.layers.
|
| 321 |
-
"encoder.layers.
|
| 322 |
-
"encoder.layers.8.
|
| 323 |
-
"encoder.layers.8.
|
| 324 |
-
"encoder.layers.8.
|
| 325 |
-
"encoder.layers.8.
|
| 326 |
-
"encoder.layers.8.
|
| 327 |
-
"encoder.layers.8.
|
| 328 |
-
"encoder.layers.8.
|
| 329 |
-
"encoder.layers.8.
|
| 330 |
-
"encoder.layers.8.self_attn.
|
| 331 |
-
"encoder.layers.8.self_attn.
|
| 332 |
-
"encoder.layers.8.self_attn.
|
| 333 |
-
"encoder.layers.
|
| 334 |
-
"encoder.layers.
|
| 335 |
-
"encoder.layers.
|
| 336 |
-
"encoder.layers.
|
| 337 |
-
"encoder.layers.
|
| 338 |
-
"encoder.layers.
|
| 339 |
-
"encoder.layers.9.
|
| 340 |
-
"encoder.layers.9.
|
| 341 |
-
"encoder.layers.9.
|
| 342 |
-
"encoder.layers.9.
|
| 343 |
-
"encoder.layers.9.
|
| 344 |
-
"encoder.layers.9.
|
| 345 |
-
"encoder.layers.9.
|
| 346 |
-
"encoder.layers.9.
|
| 347 |
-
"encoder.layers.9.self_attn.
|
| 348 |
-
"encoder.layers.9.self_attn.
|
| 349 |
-
"encoder.layers.9.self_attn.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
}
|
| 351 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"metadata": {
|
| 3 |
+
"total_size": 6321205916
|
| 4 |
},
|
| 5 |
"weight_map": {
|
| 6 |
+
"lm_head.bias": "model-00002-of-00002.safetensors",
|
| 7 |
+
"lm_head.decoder.weight": "model-00002-of-00002.safetensors",
|
| 8 |
+
"lm_head.dense.bias": "model-00002-of-00002.safetensors",
|
| 9 |
+
"lm_head.dense.weight": "model-00002-of-00002.safetensors",
|
| 10 |
+
"lm_head.layer_norm.bias": "model-00002-of-00002.safetensors",
|
| 11 |
+
"lm_head.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 12 |
+
"lucaone.embeddings.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"lucaone.embeddings.embed_type.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"lucaone.encoder.last_layer_norm.bias": "model-00002-of-00002.safetensors",
|
| 15 |
+
"lucaone.encoder.last_layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 16 |
+
"lucaone.encoder.layers.0.fc1.bias": "model-00001-of-00002.safetensors",
|
| 17 |
+
"lucaone.encoder.layers.0.fc1.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"lucaone.encoder.layers.0.fc2.bias": "model-00001-of-00002.safetensors",
|
| 19 |
+
"lucaone.encoder.layers.0.fc2.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"lucaone.encoder.layers.0.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 21 |
+
"lucaone.encoder.layers.0.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"lucaone.encoder.layers.0.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 23 |
+
"lucaone.encoder.layers.0.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"lucaone.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 25 |
+
"lucaone.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"lucaone.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 27 |
+
"lucaone.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"lucaone.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 29 |
+
"lucaone.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"lucaone.encoder.layers.0.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 31 |
+
"lucaone.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 32 |
+
"lucaone.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"lucaone.encoder.layers.1.fc1.bias": "model-00001-of-00002.safetensors",
|
| 34 |
+
"lucaone.encoder.layers.1.fc1.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"lucaone.encoder.layers.1.fc2.bias": "model-00001-of-00002.safetensors",
|
| 36 |
+
"lucaone.encoder.layers.1.fc2.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"lucaone.encoder.layers.1.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 38 |
+
"lucaone.encoder.layers.1.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"lucaone.encoder.layers.1.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 40 |
+
"lucaone.encoder.layers.1.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"lucaone.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 42 |
+
"lucaone.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"lucaone.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 44 |
+
"lucaone.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"lucaone.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 46 |
+
"lucaone.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"lucaone.encoder.layers.1.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 48 |
+
"lucaone.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 49 |
+
"lucaone.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"lucaone.encoder.layers.10.fc1.bias": "model-00001-of-00002.safetensors",
|
| 51 |
+
"lucaone.encoder.layers.10.fc1.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"lucaone.encoder.layers.10.fc2.bias": "model-00001-of-00002.safetensors",
|
| 53 |
+
"lucaone.encoder.layers.10.fc2.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"lucaone.encoder.layers.10.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 55 |
+
"lucaone.encoder.layers.10.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"lucaone.encoder.layers.10.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 57 |
+
"lucaone.encoder.layers.10.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"lucaone.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 59 |
+
"lucaone.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"lucaone.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 61 |
+
"lucaone.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"lucaone.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 63 |
+
"lucaone.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"lucaone.encoder.layers.10.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 65 |
+
"lucaone.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 66 |
+
"lucaone.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"lucaone.encoder.layers.11.fc1.bias": "model-00001-of-00002.safetensors",
|
| 68 |
+
"lucaone.encoder.layers.11.fc1.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"lucaone.encoder.layers.11.fc2.bias": "model-00001-of-00002.safetensors",
|
| 70 |
+
"lucaone.encoder.layers.11.fc2.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"lucaone.encoder.layers.11.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 72 |
+
"lucaone.encoder.layers.11.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"lucaone.encoder.layers.11.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 74 |
+
"lucaone.encoder.layers.11.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"lucaone.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 76 |
+
"lucaone.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"lucaone.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 78 |
+
"lucaone.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"lucaone.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 80 |
+
"lucaone.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"lucaone.encoder.layers.11.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 82 |
+
"lucaone.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 83 |
+
"lucaone.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"lucaone.encoder.layers.12.fc1.bias": "model-00001-of-00002.safetensors",
|
| 85 |
+
"lucaone.encoder.layers.12.fc1.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"lucaone.encoder.layers.12.fc2.bias": "model-00001-of-00002.safetensors",
|
| 87 |
+
"lucaone.encoder.layers.12.fc2.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"lucaone.encoder.layers.12.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 89 |
+
"lucaone.encoder.layers.12.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"lucaone.encoder.layers.12.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 91 |
+
"lucaone.encoder.layers.12.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"lucaone.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 93 |
+
"lucaone.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"lucaone.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 95 |
+
"lucaone.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"lucaone.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 97 |
+
"lucaone.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"lucaone.encoder.layers.12.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 99 |
+
"lucaone.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 100 |
+
"lucaone.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 101 |
+
"lucaone.encoder.layers.13.fc1.bias": "model-00001-of-00002.safetensors",
|
| 102 |
+
"lucaone.encoder.layers.13.fc1.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"lucaone.encoder.layers.13.fc2.bias": "model-00001-of-00002.safetensors",
|
| 104 |
+
"lucaone.encoder.layers.13.fc2.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"lucaone.encoder.layers.13.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 106 |
+
"lucaone.encoder.layers.13.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"lucaone.encoder.layers.13.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 108 |
+
"lucaone.encoder.layers.13.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 109 |
+
"lucaone.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 110 |
+
"lucaone.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"lucaone.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 112 |
+
"lucaone.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 113 |
+
"lucaone.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 114 |
+
"lucaone.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 115 |
+
"lucaone.encoder.layers.13.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 116 |
+
"lucaone.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 117 |
+
"lucaone.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"lucaone.encoder.layers.14.fc1.bias": "model-00001-of-00002.safetensors",
|
| 119 |
+
"lucaone.encoder.layers.14.fc1.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"lucaone.encoder.layers.14.fc2.bias": "model-00001-of-00002.safetensors",
|
| 121 |
+
"lucaone.encoder.layers.14.fc2.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"lucaone.encoder.layers.14.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 123 |
+
"lucaone.encoder.layers.14.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 124 |
+
"lucaone.encoder.layers.14.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 125 |
+
"lucaone.encoder.layers.14.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 126 |
+
"lucaone.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 127 |
+
"lucaone.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"lucaone.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 129 |
+
"lucaone.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"lucaone.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 131 |
+
"lucaone.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"lucaone.encoder.layers.14.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 133 |
+
"lucaone.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 134 |
+
"lucaone.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 135 |
+
"lucaone.encoder.layers.15.fc1.bias": "model-00001-of-00002.safetensors",
|
| 136 |
+
"lucaone.encoder.layers.15.fc1.weight": "model-00001-of-00002.safetensors",
|
| 137 |
+
"lucaone.encoder.layers.15.fc2.bias": "model-00002-of-00002.safetensors",
|
| 138 |
+
"lucaone.encoder.layers.15.fc2.weight": "model-00002-of-00002.safetensors",
|
| 139 |
+
"lucaone.encoder.layers.15.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 140 |
+
"lucaone.encoder.layers.15.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"lucaone.encoder.layers.15.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 142 |
+
"lucaone.encoder.layers.15.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"lucaone.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 144 |
+
"lucaone.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 145 |
+
"lucaone.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 146 |
+
"lucaone.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"lucaone.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 148 |
+
"lucaone.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"lucaone.encoder.layers.15.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 150 |
+
"lucaone.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 151 |
+
"lucaone.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"lucaone.encoder.layers.16.fc1.bias": "model-00002-of-00002.safetensors",
|
| 153 |
+
"lucaone.encoder.layers.16.fc1.weight": "model-00002-of-00002.safetensors",
|
| 154 |
+
"lucaone.encoder.layers.16.fc2.bias": "model-00002-of-00002.safetensors",
|
| 155 |
+
"lucaone.encoder.layers.16.fc2.weight": "model-00002-of-00002.safetensors",
|
| 156 |
+
"lucaone.encoder.layers.16.post_layer_norm.bias": "model-00002-of-00002.safetensors",
|
| 157 |
+
"lucaone.encoder.layers.16.post_layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 158 |
+
"lucaone.encoder.layers.16.pre_layer_norm.bias": "model-00002-of-00002.safetensors",
|
| 159 |
+
"lucaone.encoder.layers.16.pre_layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 160 |
+
"lucaone.encoder.layers.16.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 161 |
+
"lucaone.encoder.layers.16.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 162 |
+
"lucaone.encoder.layers.16.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
| 163 |
+
"lucaone.encoder.layers.16.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 164 |
+
"lucaone.encoder.layers.16.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 165 |
+
"lucaone.encoder.layers.16.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 166 |
+
"lucaone.encoder.layers.16.self_attn.rot_emb.inv_freq": "model-00002-of-00002.safetensors",
|
| 167 |
+
"lucaone.encoder.layers.16.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 168 |
+
"lucaone.encoder.layers.16.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 169 |
+
"lucaone.encoder.layers.17.fc1.bias": "model-00002-of-00002.safetensors",
|
| 170 |
+
"lucaone.encoder.layers.17.fc1.weight": "model-00002-of-00002.safetensors",
|
| 171 |
+
"lucaone.encoder.layers.17.fc2.bias": "model-00002-of-00002.safetensors",
|
| 172 |
+
"lucaone.encoder.layers.17.fc2.weight": "model-00002-of-00002.safetensors",
|
| 173 |
+
"lucaone.encoder.layers.17.post_layer_norm.bias": "model-00002-of-00002.safetensors",
|
| 174 |
+
"lucaone.encoder.layers.17.post_layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 175 |
+
"lucaone.encoder.layers.17.pre_layer_norm.bias": "model-00002-of-00002.safetensors",
|
| 176 |
+
"lucaone.encoder.layers.17.pre_layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 177 |
+
"lucaone.encoder.layers.17.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 178 |
+
"lucaone.encoder.layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 179 |
+
"lucaone.encoder.layers.17.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
| 180 |
+
"lucaone.encoder.layers.17.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 181 |
+
"lucaone.encoder.layers.17.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 182 |
+
"lucaone.encoder.layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 183 |
+
"lucaone.encoder.layers.17.self_attn.rot_emb.inv_freq": "model-00002-of-00002.safetensors",
|
| 184 |
+
"lucaone.encoder.layers.17.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 185 |
+
"lucaone.encoder.layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 186 |
+
"lucaone.encoder.layers.18.fc1.bias": "model-00002-of-00002.safetensors",
|
| 187 |
+
"lucaone.encoder.layers.18.fc1.weight": "model-00002-of-00002.safetensors",
|
| 188 |
+
"lucaone.encoder.layers.18.fc2.bias": "model-00002-of-00002.safetensors",
|
| 189 |
+
"lucaone.encoder.layers.18.fc2.weight": "model-00002-of-00002.safetensors",
|
| 190 |
+
"lucaone.encoder.layers.18.post_layer_norm.bias": "model-00002-of-00002.safetensors",
|
| 191 |
+
"lucaone.encoder.layers.18.post_layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 192 |
+
"lucaone.encoder.layers.18.pre_layer_norm.bias": "model-00002-of-00002.safetensors",
|
| 193 |
+
"lucaone.encoder.layers.18.pre_layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 194 |
+
"lucaone.encoder.layers.18.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 195 |
+
"lucaone.encoder.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 196 |
+
"lucaone.encoder.layers.18.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
| 197 |
+
"lucaone.encoder.layers.18.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 198 |
+
"lucaone.encoder.layers.18.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 199 |
+
"lucaone.encoder.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 200 |
+
"lucaone.encoder.layers.18.self_attn.rot_emb.inv_freq": "model-00002-of-00002.safetensors",
|
| 201 |
+
"lucaone.encoder.layers.18.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 202 |
+
"lucaone.encoder.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 203 |
+
"lucaone.encoder.layers.19.fc1.bias": "model-00002-of-00002.safetensors",
|
| 204 |
+
"lucaone.encoder.layers.19.fc1.weight": "model-00002-of-00002.safetensors",
|
| 205 |
+
"lucaone.encoder.layers.19.fc2.bias": "model-00002-of-00002.safetensors",
|
| 206 |
+
"lucaone.encoder.layers.19.fc2.weight": "model-00002-of-00002.safetensors",
|
| 207 |
+
"lucaone.encoder.layers.19.post_layer_norm.bias": "model-00002-of-00002.safetensors",
|
| 208 |
+
"lucaone.encoder.layers.19.post_layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 209 |
+
"lucaone.encoder.layers.19.pre_layer_norm.bias": "model-00002-of-00002.safetensors",
|
| 210 |
+
"lucaone.encoder.layers.19.pre_layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 211 |
+
"lucaone.encoder.layers.19.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 212 |
+
"lucaone.encoder.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 213 |
+
"lucaone.encoder.layers.19.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
| 214 |
+
"lucaone.encoder.layers.19.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 215 |
+
"lucaone.encoder.layers.19.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 216 |
+
"lucaone.encoder.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 217 |
+
"lucaone.encoder.layers.19.self_attn.rot_emb.inv_freq": "model-00002-of-00002.safetensors",
|
| 218 |
+
"lucaone.encoder.layers.19.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 219 |
+
"lucaone.encoder.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 220 |
+
"lucaone.encoder.layers.2.fc1.bias": "model-00001-of-00002.safetensors",
|
| 221 |
+
"lucaone.encoder.layers.2.fc1.weight": "model-00001-of-00002.safetensors",
|
| 222 |
+
"lucaone.encoder.layers.2.fc2.bias": "model-00001-of-00002.safetensors",
|
| 223 |
+
"lucaone.encoder.layers.2.fc2.weight": "model-00001-of-00002.safetensors",
|
| 224 |
+
"lucaone.encoder.layers.2.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 225 |
+
"lucaone.encoder.layers.2.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 226 |
+
"lucaone.encoder.layers.2.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 227 |
+
"lucaone.encoder.layers.2.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 228 |
+
"lucaone.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 229 |
+
"lucaone.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 230 |
+
"lucaone.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 231 |
+
"lucaone.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 232 |
+
"lucaone.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 233 |
+
"lucaone.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 234 |
+
"lucaone.encoder.layers.2.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 235 |
+
"lucaone.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 236 |
+
"lucaone.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 237 |
+
"lucaone.encoder.layers.3.fc1.bias": "model-00001-of-00002.safetensors",
|
| 238 |
+
"lucaone.encoder.layers.3.fc1.weight": "model-00001-of-00002.safetensors",
|
| 239 |
+
"lucaone.encoder.layers.3.fc2.bias": "model-00001-of-00002.safetensors",
|
| 240 |
+
"lucaone.encoder.layers.3.fc2.weight": "model-00001-of-00002.safetensors",
|
| 241 |
+
"lucaone.encoder.layers.3.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 242 |
+
"lucaone.encoder.layers.3.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 243 |
+
"lucaone.encoder.layers.3.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 244 |
+
"lucaone.encoder.layers.3.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 245 |
+
"lucaone.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 246 |
+
"lucaone.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 247 |
+
"lucaone.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 248 |
+
"lucaone.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 249 |
+
"lucaone.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 250 |
+
"lucaone.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 251 |
+
"lucaone.encoder.layers.3.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 252 |
+
"lucaone.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 253 |
+
"lucaone.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 254 |
+
"lucaone.encoder.layers.4.fc1.bias": "model-00001-of-00002.safetensors",
|
| 255 |
+
"lucaone.encoder.layers.4.fc1.weight": "model-00001-of-00002.safetensors",
|
| 256 |
+
"lucaone.encoder.layers.4.fc2.bias": "model-00001-of-00002.safetensors",
|
| 257 |
+
"lucaone.encoder.layers.4.fc2.weight": "model-00001-of-00002.safetensors",
|
| 258 |
+
"lucaone.encoder.layers.4.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 259 |
+
"lucaone.encoder.layers.4.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 260 |
+
"lucaone.encoder.layers.4.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 261 |
+
"lucaone.encoder.layers.4.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 262 |
+
"lucaone.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 263 |
+
"lucaone.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 264 |
+
"lucaone.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 265 |
+
"lucaone.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 266 |
+
"lucaone.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 267 |
+
"lucaone.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 268 |
+
"lucaone.encoder.layers.4.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 269 |
+
"lucaone.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 270 |
+
"lucaone.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 271 |
+
"lucaone.encoder.layers.5.fc1.bias": "model-00001-of-00002.safetensors",
|
| 272 |
+
"lucaone.encoder.layers.5.fc1.weight": "model-00001-of-00002.safetensors",
|
| 273 |
+
"lucaone.encoder.layers.5.fc2.bias": "model-00001-of-00002.safetensors",
|
| 274 |
+
"lucaone.encoder.layers.5.fc2.weight": "model-00001-of-00002.safetensors",
|
| 275 |
+
"lucaone.encoder.layers.5.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 276 |
+
"lucaone.encoder.layers.5.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 277 |
+
"lucaone.encoder.layers.5.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 278 |
+
"lucaone.encoder.layers.5.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 279 |
+
"lucaone.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 280 |
+
"lucaone.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 281 |
+
"lucaone.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 282 |
+
"lucaone.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 283 |
+
"lucaone.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 284 |
+
"lucaone.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 285 |
+
"lucaone.encoder.layers.5.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 286 |
+
"lucaone.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 287 |
+
"lucaone.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 288 |
+
"lucaone.encoder.layers.6.fc1.bias": "model-00001-of-00002.safetensors",
|
| 289 |
+
"lucaone.encoder.layers.6.fc1.weight": "model-00001-of-00002.safetensors",
|
| 290 |
+
"lucaone.encoder.layers.6.fc2.bias": "model-00001-of-00002.safetensors",
|
| 291 |
+
"lucaone.encoder.layers.6.fc2.weight": "model-00001-of-00002.safetensors",
|
| 292 |
+
"lucaone.encoder.layers.6.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 293 |
+
"lucaone.encoder.layers.6.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 294 |
+
"lucaone.encoder.layers.6.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 295 |
+
"lucaone.encoder.layers.6.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 296 |
+
"lucaone.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 297 |
+
"lucaone.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 298 |
+
"lucaone.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 299 |
+
"lucaone.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 300 |
+
"lucaone.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 301 |
+
"lucaone.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 302 |
+
"lucaone.encoder.layers.6.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 303 |
+
"lucaone.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 304 |
+
"lucaone.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 305 |
+
"lucaone.encoder.layers.7.fc1.bias": "model-00001-of-00002.safetensors",
|
| 306 |
+
"lucaone.encoder.layers.7.fc1.weight": "model-00001-of-00002.safetensors",
|
| 307 |
+
"lucaone.encoder.layers.7.fc2.bias": "model-00001-of-00002.safetensors",
|
| 308 |
+
"lucaone.encoder.layers.7.fc2.weight": "model-00001-of-00002.safetensors",
|
| 309 |
+
"lucaone.encoder.layers.7.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 310 |
+
"lucaone.encoder.layers.7.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 311 |
+
"lucaone.encoder.layers.7.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 312 |
+
"lucaone.encoder.layers.7.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 313 |
+
"lucaone.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 314 |
+
"lucaone.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 315 |
+
"lucaone.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 316 |
+
"lucaone.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 317 |
+
"lucaone.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 318 |
+
"lucaone.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 319 |
+
"lucaone.encoder.layers.7.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 320 |
+
"lucaone.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 321 |
+
"lucaone.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 322 |
+
"lucaone.encoder.layers.8.fc1.bias": "model-00001-of-00002.safetensors",
|
| 323 |
+
"lucaone.encoder.layers.8.fc1.weight": "model-00001-of-00002.safetensors",
|
| 324 |
+
"lucaone.encoder.layers.8.fc2.bias": "model-00001-of-00002.safetensors",
|
| 325 |
+
"lucaone.encoder.layers.8.fc2.weight": "model-00001-of-00002.safetensors",
|
| 326 |
+
"lucaone.encoder.layers.8.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 327 |
+
"lucaone.encoder.layers.8.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 328 |
+
"lucaone.encoder.layers.8.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 329 |
+
"lucaone.encoder.layers.8.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 330 |
+
"lucaone.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 331 |
+
"lucaone.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 332 |
+
"lucaone.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 333 |
+
"lucaone.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 334 |
+
"lucaone.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 335 |
+
"lucaone.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 336 |
+
"lucaone.encoder.layers.8.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 337 |
+
"lucaone.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 338 |
+
"lucaone.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 339 |
+
"lucaone.encoder.layers.9.fc1.bias": "model-00001-of-00002.safetensors",
|
| 340 |
+
"lucaone.encoder.layers.9.fc1.weight": "model-00001-of-00002.safetensors",
|
| 341 |
+
"lucaone.encoder.layers.9.fc2.bias": "model-00001-of-00002.safetensors",
|
| 342 |
+
"lucaone.encoder.layers.9.fc2.weight": "model-00001-of-00002.safetensors",
|
| 343 |
+
"lucaone.encoder.layers.9.post_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 344 |
+
"lucaone.encoder.layers.9.post_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 345 |
+
"lucaone.encoder.layers.9.pre_layer_norm.bias": "model-00001-of-00002.safetensors",
|
| 346 |
+
"lucaone.encoder.layers.9.pre_layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 347 |
+
"lucaone.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 348 |
+
"lucaone.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 349 |
+
"lucaone.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 350 |
+
"lucaone.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 351 |
+
"lucaone.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 352 |
+
"lucaone.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 353 |
+
"lucaone.encoder.layers.9.self_attn.rot_emb.inv_freq": "model-00001-of-00002.safetensors",
|
| 354 |
+
"lucaone.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 355 |
+
"lucaone.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors"
|
| 356 |
}
|
| 357 |
}
|
modeling_lucaone.py
ADDED
|
@@ -0,0 +1,1344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# encoding: utf-8
|
| 3 |
+
'''
|
| 4 |
+
@license: (C) Copyright 2025, Hey.
|
| 5 |
+
@author: Hey
|
| 6 |
+
@email: [email protected]
|
| 7 |
+
@tel: 137****6540
|
| 8 |
+
@datetime: 2025/12/30 11:35
|
| 9 |
+
@project: lucaone
|
| 10 |
+
@file: modeling_lucaone
|
| 11 |
+
@desc: modeling_lucaone
|
| 12 |
+
'''
|
| 13 |
+
import math
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
from transformers import PreTrainedModel
|
| 18 |
+
from transformers.modeling_outputs import BaseModelOutput
|
| 19 |
+
from transformers.modeling_outputs import MaskedLMOutput
|
| 20 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 21 |
+
from transformers.modeling_outputs import TokenClassifierOutput
|
| 22 |
+
from typing import Optional, List, Union, Tuple
|
| 23 |
+
from .configuration_lucaone import LucaGPLMConfig
|
| 24 |
+
try:
|
| 25 |
+
from apex.normalization import FusedLayerNorm as _FusedLayerNorm
|
| 26 |
+
class LucaGPLM1bLayerNorm(_FusedLayerNorm):
|
| 27 |
+
@torch.jit.unused
|
| 28 |
+
def forward(self, x):
|
| 29 |
+
if not x.is_cuda:
|
| 30 |
+
return super().forward(x)
|
| 31 |
+
else:
|
| 32 |
+
with torch.cuda.device(x.device):
|
| 33 |
+
return super().forward(x)
|
| 34 |
+
except ImportError:
|
| 35 |
+
from torch.nn import LayerNorm as LucaGPLM1bLayerNorm
|
| 36 |
+
|
| 37 |
+
def gelu(x):
|
| 38 |
+
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
| 39 |
+
|
| 40 |
+
def rotate_half(x):
|
| 41 |
+
x1, x2 = x.chunk(2, dim=-1)
|
| 42 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 43 |
+
|
| 44 |
+
def apply_rotary_pos_emb(x, cos, sin):
|
| 45 |
+
cos = cos[:, : x.shape[-2], :]
|
| 46 |
+
sin = sin[:, : x.shape[-2], :]
|
| 47 |
+
return (x * cos) + (rotate_half(x) * sin)
|
| 48 |
+
|
| 49 |
+
class LucaGPLMRotaryEmbedding(torch.nn.Module):
|
| 50 |
+
def __init__(self, dim: int, *_, **__):
|
| 51 |
+
super().__init__()
|
| 52 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
| 53 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 54 |
+
|
| 55 |
+
self._seq_len_cached = None
|
| 56 |
+
self._cos_cached = None
|
| 57 |
+
self._sin_cached = None
|
| 58 |
+
|
| 59 |
+
def _update_cos_sin_tables(self, x, seq_dimension=1):
|
| 60 |
+
seq_len = x.shape[seq_dimension]
|
| 61 |
+
|
| 62 |
+
if (seq_len != self._seq_len_cached or
|
| 63 |
+
self._cos_cached is None or
|
| 64 |
+
self._sin_cached is None or
|
| 65 |
+
self._cos_cached.device != x.device):
|
| 66 |
+
self._seq_len_cached = seq_len
|
| 67 |
+
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq)
|
| 68 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 69 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
| 70 |
+
|
| 71 |
+
self._cos_cached = emb.cos()[None, :, :]
|
| 72 |
+
self._sin_cached = emb.sin()[None, :, :]
|
| 73 |
+
|
| 74 |
+
return self._cos_cached, self._sin_cached
|
| 75 |
+
|
| 76 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 77 |
+
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2)
|
| 78 |
+
|
| 79 |
+
return (
|
| 80 |
+
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
|
| 81 |
+
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
class LucaGPLMGlobalMaskWeightedAttentionPooling1D(nn.Module):
|
| 85 |
+
def __init__(self, embed_size, use_bias=False):
|
| 86 |
+
super(LucaGPLMGlobalMaskWeightedAttentionPooling1D, self).__init__()
|
| 87 |
+
self.embed_size = embed_size
|
| 88 |
+
self.use_bias = use_bias
|
| 89 |
+
|
| 90 |
+
self.W = nn.Parameter(torch.Tensor(self.embed_size))
|
| 91 |
+
nn.init.trunc_normal_(self.W, std=0.01)
|
| 92 |
+
if self.use_bias:
|
| 93 |
+
self.b = nn.Parameter(torch.Tensor(1))
|
| 94 |
+
nn.init.trunc_normal_(self.b, std=0.01)
|
| 95 |
+
|
| 96 |
+
def forward(self, x, mask=None):
|
| 97 |
+
# (B, Len, Embed) x (Embed,) = (B, Len)
|
| 98 |
+
logits = torch.matmul(x, self.W)
|
| 99 |
+
if self.use_bias:
|
| 100 |
+
logits += self.b
|
| 101 |
+
|
| 102 |
+
if mask is not None:
|
| 103 |
+
attention_probs = nn.Softmax(dim=-1)(logits + (1.0 - mask) * -10000)
|
| 104 |
+
else:
|
| 105 |
+
attention_probs = nn.Softmax(dim=-1)(logits)
|
| 106 |
+
x = torch.sum(torch.unsqueeze(attention_probs, dim=-1) * x, dim=1)
|
| 107 |
+
return x
|
| 108 |
+
|
| 109 |
+
def __repr__(self):
|
| 110 |
+
return self.__class__.__name__ + ' (' + str(self.embed_size) + (', bias=%r)' % self.use_bias)
|
| 111 |
+
|
| 112 |
+
class LucaGPLMGlobalMaskContextAttentionPooling1D(nn.Module):
|
| 113 |
+
def __init__(self, embed_size, units=None, use_additive_bias=False, use_attention_bias=False):
|
| 114 |
+
super(LucaGPLMGlobalMaskContextAttentionPooling1D, self).__init__()
|
| 115 |
+
self.embed_size = embed_size
|
| 116 |
+
self.use_additive_bias = use_additive_bias
|
| 117 |
+
self.use_attention_bias = use_attention_bias
|
| 118 |
+
self.units = units if units else embed_size
|
| 119 |
+
|
| 120 |
+
self.U = nn.Parameter(torch.Tensor(self.embed_size, self.units))
|
| 121 |
+
self.V = nn.Parameter(torch.Tensor(self.embed_size, self.units))
|
| 122 |
+
if self.use_additive_bias:
|
| 123 |
+
self.b1 = nn.Parameter(torch.Tensor(self.units))
|
| 124 |
+
nn.init.trunc_normal_(self.b1, std=0.01)
|
| 125 |
+
if self.use_attention_bias:
|
| 126 |
+
self.b2 = nn.Parameter(torch.Tensor(1))
|
| 127 |
+
nn.init.trunc_normal_(self.b2, std=0.01)
|
| 128 |
+
|
| 129 |
+
self.c = nn.Parameter(torch.Tensor(self.units))
|
| 130 |
+
|
| 131 |
+
nn.init.trunc_normal_(self.U, std=0.01)
|
| 132 |
+
nn.init.trunc_normal_(self.V, std=0.01)
|
| 133 |
+
nn.init.trunc_normal_(self.c, std=0.01)
|
| 134 |
+
|
| 135 |
+
def forward(self, x, mask=None):
|
| 136 |
+
# (B, Len, Embed) x (Embed, Units) = (B, Len, Units)
|
| 137 |
+
q = torch.matmul(x, self.U)
|
| 138 |
+
k = torch.matmul(x, self.V)
|
| 139 |
+
if self.use_additive_bias:
|
| 140 |
+
h = torch.tanh(q + k + self.b1)
|
| 141 |
+
else:
|
| 142 |
+
h = torch.tanh(q + k)
|
| 143 |
+
|
| 144 |
+
if self.use_attention_bias:
|
| 145 |
+
e = torch.matmul(h, self.c) + self.b2
|
| 146 |
+
else:
|
| 147 |
+
e = torch.matmul(h, self.c)
|
| 148 |
+
if mask is not None:
|
| 149 |
+
attention_probs = nn.Softmax(dim=-1)(e + (1.0 - mask) * -10000)
|
| 150 |
+
else:
|
| 151 |
+
attention_probs = nn.Softmax(dim=-1)(e)
|
| 152 |
+
x = torch.sum(torch.unsqueeze(attention_probs, dim=-1) * x, dim=1)
|
| 153 |
+
return x
|
| 154 |
+
|
| 155 |
+
def __repr__(self):
|
| 156 |
+
return self.__class__.__name__ + ' (' + str(self.embed_size) + ' -> ' + str(self.units) + ', bias=(%r, %r))' % (self.use_additive_bias, self.use_attention_bias)
|
| 157 |
+
|
| 158 |
+
class LucaGPLMGlobalMaskValueAttentionPooling1D(nn.Module):
|
| 159 |
+
def __init__(self, embed_size, units=None, use_additive_bias=False, use_attention_bias=False):
|
| 160 |
+
super(LucaGPLMGlobalMaskValueAttentionPooling1D, self).__init__()
|
| 161 |
+
self.embed_size = embed_size
|
| 162 |
+
self.use_additive_bias = use_additive_bias
|
| 163 |
+
self.use_attention_bias = use_attention_bias
|
| 164 |
+
self.units = units if units else embed_size
|
| 165 |
+
|
| 166 |
+
self.U = nn.Parameter(torch.Tensor(self.embed_size, self.units))
|
| 167 |
+
self.V = nn.Parameter(torch.Tensor(self.embed_size, self.units))
|
| 168 |
+
if self.use_additive_bias:
|
| 169 |
+
self.b1 = nn.Parameter(torch.Tensor(self.units))
|
| 170 |
+
nn.init.trunc_normal_(self.b1, std=0.01)
|
| 171 |
+
if self.use_attention_bias:
|
| 172 |
+
self.b2 = nn.Parameter(torch.Tensor(self.embed_size))
|
| 173 |
+
nn.init.trunc_normal_(self.b2, std=0.01)
|
| 174 |
+
|
| 175 |
+
self.W = nn.Parameter(torch.Tensor(self.units, self.embed_size))
|
| 176 |
+
|
| 177 |
+
nn.init.trunc_normal_(self.U, std=0.01)
|
| 178 |
+
nn.init.trunc_normal_(self.V, std=0.01)
|
| 179 |
+
nn.init.trunc_normal_(self.W, std=0.01)
|
| 180 |
+
|
| 181 |
+
def forward(self, x, mask=None):
|
| 182 |
+
# (B, Len, Embed) x (Embed, Units) = (B, Len, Units)
|
| 183 |
+
q = torch.matmul(x, self.U)
|
| 184 |
+
k = torch.matmul(x, self.V)
|
| 185 |
+
if self.use_additive_bias:
|
| 186 |
+
h = torch.tanh(q + k + self.b1)
|
| 187 |
+
else:
|
| 188 |
+
h = torch.tanh(q + k)
|
| 189 |
+
|
| 190 |
+
# (B, Len, Units) x (Units, Embed) = (B, Len, Embed)
|
| 191 |
+
if self.use_attention_bias:
|
| 192 |
+
e = torch.matmul(h, self.W) + self.b2
|
| 193 |
+
else:
|
| 194 |
+
e = torch.matmul(h, self.W)
|
| 195 |
+
if mask is not None:
|
| 196 |
+
attention_probs = nn.Softmax(dim=1)(e + torch.unsqueeze((1.0 - mask) * -10000, dim=-1))
|
| 197 |
+
else:
|
| 198 |
+
attention_probs = nn.Softmax(dim=1)(e)
|
| 199 |
+
x = torch.sum(attention_probs * x, dim=1)
|
| 200 |
+
return x
|
| 201 |
+
|
| 202 |
+
def __repr__(self):
|
| 203 |
+
return self.__class__.__name__ + ' (' + str(self.embed_size) + ' -> ' + str(self.units) + ', bias=(%r, %r))' % (self.use_additive_bias, self.use_attention_bias)
|
| 204 |
+
|
| 205 |
+
class LucaGPLM1LayerNorm(nn.Module):
|
| 206 |
+
def __init__(self, hidden_size, eps=1e-12, affine=True):
|
| 207 |
+
super().__init__()
|
| 208 |
+
self.hidden_size = (hidden_size,) if isinstance(hidden_size, int) else tuple(hidden_size)
|
| 209 |
+
self.eps = eps
|
| 210 |
+
self.affine = bool(affine)
|
| 211 |
+
if self.affine:
|
| 212 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 213 |
+
self.bias = nn.Parameter(torch.zeros(hidden_size))
|
| 214 |
+
else:
|
| 215 |
+
self.weight, self.bias = None, None
|
| 216 |
+
|
| 217 |
+
def forward(self, x):
|
| 218 |
+
dims = tuple(-(i + 1) for i in range(len(self.hidden_size)))
|
| 219 |
+
means = x.mean(dims, keepdim=True)
|
| 220 |
+
x_zeromean = x - means
|
| 221 |
+
variances = x_zeromean.pow(2).mean(dims, keepdim=True)
|
| 222 |
+
x = x_zeromean / torch.sqrt(variances + self.eps)
|
| 223 |
+
if self.affine:
|
| 224 |
+
x = (self.weight * x) + self.bias
|
| 225 |
+
return x
|
| 226 |
+
|
| 227 |
+
class LucaGPLMMultiheadAttention(nn.Module):
|
| 228 |
+
def __init__(
|
| 229 |
+
self,
|
| 230 |
+
embed_dim,
|
| 231 |
+
num_heads,
|
| 232 |
+
kdim=None,
|
| 233 |
+
vdim=None,
|
| 234 |
+
dropout=0.0,
|
| 235 |
+
bias=True,
|
| 236 |
+
add_bias_kv: bool = False,
|
| 237 |
+
add_zero_attn: bool = False,
|
| 238 |
+
self_attention: bool = False,
|
| 239 |
+
encoder_decoder_attention: bool = False,
|
| 240 |
+
use_rotary_embeddings: bool = False,
|
| 241 |
+
):
|
| 242 |
+
super().__init__()
|
| 243 |
+
self.embed_dim = embed_dim
|
| 244 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
| 245 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
| 246 |
+
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
| 247 |
+
|
| 248 |
+
self.num_heads = num_heads
|
| 249 |
+
self.dropout = dropout
|
| 250 |
+
self.head_dim = embed_dim // num_heads
|
| 251 |
+
assert (
|
| 252 |
+
self.head_dim * num_heads == self.embed_dim
|
| 253 |
+
), "embed_dim must be divisible by num_heads"
|
| 254 |
+
self.scaling = self.head_dim**-0.5
|
| 255 |
+
|
| 256 |
+
self.self_attention = self_attention
|
| 257 |
+
self.encoder_decoder_attention = encoder_decoder_attention
|
| 258 |
+
|
| 259 |
+
assert not self.self_attention or self.qkv_same_dim, (
|
| 260 |
+
"Self-attention requires query, key and " "value to be of the same size"
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
self.k_proj = nn.Linear(self.kdim, embed_dim, bias=bias)
|
| 264 |
+
self.v_proj = nn.Linear(self.vdim, embed_dim, bias=bias)
|
| 265 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
| 266 |
+
|
| 267 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
| 268 |
+
|
| 269 |
+
if add_bias_kv:
|
| 270 |
+
self.bias_k = nn.Parameter(torch.Tensor(1, 1, embed_dim))
|
| 271 |
+
self.bias_v = nn.Parameter(torch.Tensor(1, 1, embed_dim))
|
| 272 |
+
else:
|
| 273 |
+
self.bias_k = self.bias_v = None
|
| 274 |
+
|
| 275 |
+
self.add_zero_attn = add_zero_attn
|
| 276 |
+
|
| 277 |
+
self.reset_parameters()
|
| 278 |
+
|
| 279 |
+
self.rot_emb = None
|
| 280 |
+
if use_rotary_embeddings:
|
| 281 |
+
self.rot_emb = LucaGPLMRotaryEmbedding(dim=self.head_dim)
|
| 282 |
+
|
| 283 |
+
def reset_parameters(self):
|
| 284 |
+
nn.init.xavier_uniform_(self.k_proj.weight, gain=nn.init.calculate_gain("relu"))
|
| 285 |
+
nn.init.xavier_uniform_(self.v_proj.weight, gain=nn.init.calculate_gain("relu"))
|
| 286 |
+
nn.init.xavier_uniform_(self.q_proj.weight, gain=nn.init.calculate_gain("relu"))
|
| 287 |
+
nn.init.xavier_uniform_(self.out_proj.weight, gain=nn.init.calculate_gain("relu"))
|
| 288 |
+
|
| 289 |
+
if self.out_proj.bias is not None:
|
| 290 |
+
nn.init.constant_(self.out_proj.bias, 0.0)
|
| 291 |
+
if self.bias_k is not None:
|
| 292 |
+
nn.init.xavier_normal_(self.bias_k)
|
| 293 |
+
if self.bias_v is not None:
|
| 294 |
+
nn.init.xavier_normal_(self.bias_v)
|
| 295 |
+
|
| 296 |
+
def forward(
|
| 297 |
+
self,
|
| 298 |
+
query,
|
| 299 |
+
key: Optional[torch.Tensor] = None,
|
| 300 |
+
value: Optional[torch.Tensor] = None,
|
| 301 |
+
key_padding_mask: Optional[torch.Tensor] = None,
|
| 302 |
+
need_weights: bool = True,
|
| 303 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 304 |
+
need_head_weights: bool = False,
|
| 305 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 306 |
+
if need_head_weights:
|
| 307 |
+
need_weights = True
|
| 308 |
+
|
| 309 |
+
tgt_len, bsz, embed_dim = query.size()
|
| 310 |
+
assert embed_dim == self.embed_dim
|
| 311 |
+
|
| 312 |
+
if self.self_attention:
|
| 313 |
+
q = self.q_proj(query)
|
| 314 |
+
k = self.k_proj(query)
|
| 315 |
+
v = self.v_proj(query)
|
| 316 |
+
else:
|
| 317 |
+
assert key is not None and value is not None
|
| 318 |
+
q = self.q_proj(query)
|
| 319 |
+
k = self.k_proj(key)
|
| 320 |
+
v = self.v_proj(value)
|
| 321 |
+
|
| 322 |
+
q *= self.scaling
|
| 323 |
+
|
| 324 |
+
if self.bias_k is not None:
|
| 325 |
+
assert self.bias_v is not None
|
| 326 |
+
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
|
| 327 |
+
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
|
| 328 |
+
if attn_mask is not None:
|
| 329 |
+
attn_mask = torch.cat(
|
| 330 |
+
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
|
| 331 |
+
)
|
| 332 |
+
if key_padding_mask is not None:
|
| 333 |
+
key_padding_mask = torch.cat(
|
| 334 |
+
[
|
| 335 |
+
key_padding_mask,
|
| 336 |
+
key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
|
| 337 |
+
],
|
| 338 |
+
dim=1,
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
| 342 |
+
if k is not None:
|
| 343 |
+
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
| 344 |
+
if v is not None:
|
| 345 |
+
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
| 346 |
+
|
| 347 |
+
assert k is not None
|
| 348 |
+
src_len = k.size(1)
|
| 349 |
+
|
| 350 |
+
if self.rot_emb:
|
| 351 |
+
q, k = self.rot_emb(q, k)
|
| 352 |
+
|
| 353 |
+
attn_weights = torch.bmm(q, k.transpose(1, 2))
|
| 354 |
+
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
|
| 355 |
+
|
| 356 |
+
if attn_mask is not None:
|
| 357 |
+
attn_mask = attn_mask.unsqueeze(0)
|
| 358 |
+
attn_weights += attn_mask
|
| 359 |
+
|
| 360 |
+
if key_padding_mask is not None:
|
| 361 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
| 362 |
+
attn_weights = attn_weights.masked_fill(
|
| 363 |
+
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf")
|
| 364 |
+
)
|
| 365 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
| 366 |
+
|
| 367 |
+
attn_weights_float = F.softmax(attn_weights, dim=-1)
|
| 368 |
+
attn_weights = attn_weights_float.type_as(attn_weights)
|
| 369 |
+
attn_probs = F.dropout(
|
| 370 |
+
attn_weights_float.type_as(attn_weights),
|
| 371 |
+
p=self.dropout,
|
| 372 |
+
training=self.training,
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
assert v is not None
|
| 376 |
+
attn = torch.bmm(attn_probs, v)
|
| 377 |
+
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
|
| 378 |
+
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
| 379 |
+
attn = self.out_proj(attn)
|
| 380 |
+
|
| 381 |
+
attn_weights_output: Optional[torch.Tensor] = None
|
| 382 |
+
if need_weights:
|
| 383 |
+
attn_weights_output = attn_weights_float.view(
|
| 384 |
+
bsz, self.num_heads, tgt_len, src_len
|
| 385 |
+
).type_as(attn).transpose(1, 0)
|
| 386 |
+
if not need_head_weights:
|
| 387 |
+
# average attention weights over heads
|
| 388 |
+
attn_weights_output = attn_weights_output.mean(dim=0)
|
| 389 |
+
|
| 390 |
+
return attn, attn_weights_output
|
| 391 |
+
|
| 392 |
+
class LucaGPLMMultiheadAttentionWithSDPA(nn.Module):
|
| 393 |
+
def __init__(
|
| 394 |
+
self,
|
| 395 |
+
embed_dim,
|
| 396 |
+
num_heads,
|
| 397 |
+
kdim=None,
|
| 398 |
+
vdim=None,
|
| 399 |
+
dropout=0.0,
|
| 400 |
+
bias=True,
|
| 401 |
+
add_bias_kv: bool = False,
|
| 402 |
+
add_zero_attn: bool = False,
|
| 403 |
+
self_attention: bool = False,
|
| 404 |
+
encoder_decoder_attention: bool = False,
|
| 405 |
+
use_rotary_embeddings: bool = True,
|
| 406 |
+
):
|
| 407 |
+
super().__init__()
|
| 408 |
+
self.embed_dim = embed_dim
|
| 409 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
| 410 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
| 411 |
+
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
| 412 |
+
|
| 413 |
+
self.num_heads = num_heads
|
| 414 |
+
self.dropout = dropout
|
| 415 |
+
self.head_dim = embed_dim // num_heads
|
| 416 |
+
assert (
|
| 417 |
+
self.head_dim * num_heads == self.embed_dim
|
| 418 |
+
), "embed_dim must be divisible by num_heads"
|
| 419 |
+
self.scaling = self.head_dim**-0.5
|
| 420 |
+
|
| 421 |
+
self.self_attention = self_attention
|
| 422 |
+
self.encoder_decoder_attention = encoder_decoder_attention
|
| 423 |
+
|
| 424 |
+
assert not self.self_attention or self.qkv_same_dim, (
|
| 425 |
+
"Self-attention requires query, key and " "value to be of the same size"
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
self.k_proj = nn.Linear(self.kdim, embed_dim, bias=bias)
|
| 429 |
+
self.v_proj = nn.Linear(self.vdim, embed_dim, bias=bias)
|
| 430 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
| 431 |
+
|
| 432 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
| 433 |
+
|
| 434 |
+
if add_bias_kv:
|
| 435 |
+
self.bias_k = nn.Parameter(torch.Tensor(1, 1, embed_dim))
|
| 436 |
+
self.bias_v = nn.Parameter(torch.Tensor(1, 1, embed_dim))
|
| 437 |
+
else:
|
| 438 |
+
self.bias_k = self.bias_v = None
|
| 439 |
+
|
| 440 |
+
self.add_zero_attn = add_zero_attn
|
| 441 |
+
|
| 442 |
+
self.reset_parameters()
|
| 443 |
+
|
| 444 |
+
self.rot_emb = None
|
| 445 |
+
if use_rotary_embeddings:
|
| 446 |
+
self.rot_emb = LucaGPLMRotaryEmbedding(dim=self.head_dim)
|
| 447 |
+
|
| 448 |
+
def reset_parameters(self):
|
| 449 |
+
nn.init.xavier_uniform_(self.k_proj.weight, gain=nn.init.calculate_gain("relu"))
|
| 450 |
+
nn.init.xavier_uniform_(self.v_proj.weight, gain=nn.init.calculate_gain("relu"))
|
| 451 |
+
nn.init.xavier_uniform_(self.q_proj.weight, gain=nn.init.calculate_gain("relu"))
|
| 452 |
+
nn.init.xavier_uniform_(self.out_proj.weight, gain=nn.init.calculate_gain("relu"))
|
| 453 |
+
|
| 454 |
+
if self.out_proj.bias is not None:
|
| 455 |
+
nn.init.constant_(self.out_proj.bias, 0.0)
|
| 456 |
+
if self.bias_k is not None:
|
| 457 |
+
nn.init.xavier_normal_(self.bias_k)
|
| 458 |
+
if self.bias_v is not None:
|
| 459 |
+
nn.init.xavier_normal_(self.bias_v)
|
| 460 |
+
|
| 461 |
+
def forward(
|
| 462 |
+
self,
|
| 463 |
+
query,
|
| 464 |
+
key: Optional[torch.Tensor] = None,
|
| 465 |
+
value: Optional[torch.Tensor] = None,
|
| 466 |
+
key_padding_mask: Optional[torch.Tensor] = None,
|
| 467 |
+
need_weights: bool = True,
|
| 468 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 469 |
+
need_head_weights: bool = False,
|
| 470 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 471 |
+
|
| 472 |
+
tgt_len, bsz, embed_dim = query.size()
|
| 473 |
+
assert embed_dim == self.embed_dim
|
| 474 |
+
|
| 475 |
+
if self.self_attention:
|
| 476 |
+
q = self.q_proj(query)
|
| 477 |
+
k = self.k_proj(query)
|
| 478 |
+
v = self.v_proj(query)
|
| 479 |
+
else:
|
| 480 |
+
assert key is not None and value is not None
|
| 481 |
+
q = self.q_proj(query)
|
| 482 |
+
k = self.k_proj(key)
|
| 483 |
+
v = self.v_proj(value)
|
| 484 |
+
|
| 485 |
+
if self.bias_k is not None:
|
| 486 |
+
assert self.bias_v is not None
|
| 487 |
+
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
|
| 488 |
+
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
|
| 489 |
+
if attn_mask is not None:
|
| 490 |
+
attn_mask = torch.cat(
|
| 491 |
+
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
|
| 492 |
+
)
|
| 493 |
+
if key_padding_mask is not None:
|
| 494 |
+
key_padding_mask = torch.cat(
|
| 495 |
+
[
|
| 496 |
+
key_padding_mask,
|
| 497 |
+
key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
|
| 498 |
+
],
|
| 499 |
+
dim=1,
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
# ----------------------------------------------------------------------
|
| 503 |
+
# Flash Attention Optimization
|
| 504 |
+
# ----------------------------------------------------------------------
|
| 505 |
+
# 如果不需要返回 head weights 且 PyTorch 版本支持,则使用 Flash Attention
|
| 506 |
+
if not need_head_weights and hasattr(F, "scaled_dot_product_attention"):
|
| 507 |
+
# Reshape inputs to (Batch, Head, Seq_Len, Dim) for SDPA
|
| 508 |
+
# q, k, v input shape: (Seq_Len, Batch, Embed_Dim)
|
| 509 |
+
q_sdpa = q.view(tgt_len, bsz, self.num_heads, self.head_dim).permute(1, 2, 0, 3)
|
| 510 |
+
k_sdpa = k.view(-1, bsz, self.num_heads, self.head_dim).permute(1, 2, 0, 3)
|
| 511 |
+
v_sdpa = v.view(-1, bsz, self.num_heads, self.head_dim).permute(1, 2, 0, 3)
|
| 512 |
+
|
| 513 |
+
# Apply Rotary Embedding if needed
|
| 514 |
+
if self.rot_emb:
|
| 515 |
+
# Rotary expects inputs (..., Seq_Len, Dim)
|
| 516 |
+
# It handles broadcasting over Batch and Head
|
| 517 |
+
q_sdpa, k_sdpa = self.rot_emb(q_sdpa, k_sdpa)
|
| 518 |
+
|
| 519 |
+
# Prepare Mask
|
| 520 |
+
# SDPA accepts a broadcastable boolean mask or float mask
|
| 521 |
+
# key_padding_mask is (Batch, Seq_Len), True where padding
|
| 522 |
+
sdpa_mask = None
|
| 523 |
+
if attn_mask is not None or key_padding_mask is not None:
|
| 524 |
+
# Start with a float mask suitable for SDPA
|
| 525 |
+
target_shape = (bsz, 1, tgt_len, k_sdpa.size(2))
|
| 526 |
+
sdpa_mask = torch.zeros(target_shape, device=q.device, dtype=q.dtype)
|
| 527 |
+
|
| 528 |
+
if key_padding_mask is not None:
|
| 529 |
+
# key_padding_mask is (Batch, Seq_Len) -> (Batch, 1, 1, Seq_Len)
|
| 530 |
+
sdpa_mask = sdpa_mask.masked_fill(
|
| 531 |
+
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
|
| 532 |
+
float("-inf")
|
| 533 |
+
)
|
| 534 |
+
|
| 535 |
+
if attn_mask is not None:
|
| 536 |
+
if attn_mask.dim() == 2:
|
| 537 |
+
sdpa_mask = sdpa_mask + attn_mask.unsqueeze(0).unsqueeze(0)
|
| 538 |
+
elif attn_mask.dim() == 3:
|
| 539 |
+
pass
|
| 540 |
+
else:
|
| 541 |
+
sdpa_mask = sdpa_mask + attn_mask
|
| 542 |
+
|
| 543 |
+
# Call Flash Attention
|
| 544 |
+
# 【关键修改】:添加 scale=1.0,因为 q 已经被手动缩放过了
|
| 545 |
+
attn_output = F.scaled_dot_product_attention(
|
| 546 |
+
q_sdpa,
|
| 547 |
+
k_sdpa,
|
| 548 |
+
v_sdpa,
|
| 549 |
+
attn_mask=sdpa_mask,
|
| 550 |
+
dropout_p=self.dropout if self.training else 0.0,
|
| 551 |
+
is_causal=False
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
# Reshape back to (Seq_Len, Batch, Embed_Dim)
|
| 555 |
+
# (B, H, L, D) -> (L, B, H, D) -> (L, B, E)
|
| 556 |
+
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(tgt_len, bsz, self.embed_dim)
|
| 557 |
+
|
| 558 |
+
# Linear projection
|
| 559 |
+
attn_output = self.out_proj(attn_output)
|
| 560 |
+
|
| 561 |
+
# Return None for weights (optimization trade-off)
|
| 562 |
+
return attn_output, None
|
| 563 |
+
|
| 564 |
+
q = q * self.scaling
|
| 565 |
+
# ----------------------------------------------------------------------
|
| 566 |
+
# Original Implementation (Fallback)
|
| 567 |
+
# ----------------------------------------------------------------------
|
| 568 |
+
# print('Fall back to slow implementation.')
|
| 569 |
+
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
| 570 |
+
if k is not None:
|
| 571 |
+
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
| 572 |
+
if v is not None:
|
| 573 |
+
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
|
| 574 |
+
|
| 575 |
+
assert k is not None
|
| 576 |
+
src_len = k.size(1)
|
| 577 |
+
|
| 578 |
+
if self.rot_emb:
|
| 579 |
+
q, k = self.rot_emb(q, k)
|
| 580 |
+
|
| 581 |
+
attn_weights = torch.bmm(q, k.transpose(1, 2))
|
| 582 |
+
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
|
| 583 |
+
|
| 584 |
+
if attn_mask is not None:
|
| 585 |
+
attn_mask = attn_mask.unsqueeze(0)
|
| 586 |
+
attn_weights += attn_mask
|
| 587 |
+
|
| 588 |
+
if key_padding_mask is not None:
|
| 589 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
| 590 |
+
attn_weights = attn_weights.masked_fill(
|
| 591 |
+
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf")
|
| 592 |
+
)
|
| 593 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
| 594 |
+
|
| 595 |
+
attn_weights_float = F.softmax(attn_weights, dim=-1)
|
| 596 |
+
attn_weights = attn_weights_float.type_as(attn_weights)
|
| 597 |
+
attn_probs = F.dropout(
|
| 598 |
+
attn_weights_float.type_as(attn_weights),
|
| 599 |
+
p=self.dropout,
|
| 600 |
+
training=self.training,
|
| 601 |
+
)
|
| 602 |
+
|
| 603 |
+
assert v is not None
|
| 604 |
+
attn = torch.bmm(attn_probs, v)
|
| 605 |
+
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
|
| 606 |
+
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
| 607 |
+
attn = self.out_proj(attn)
|
| 608 |
+
|
| 609 |
+
attn_weights_output: Optional[torch.Tensor] = None
|
| 610 |
+
if need_weights:
|
| 611 |
+
attn_weights_output = attn_weights_float.view(
|
| 612 |
+
bsz, self.num_heads, tgt_len, src_len
|
| 613 |
+
).type_as(attn).transpose(1, 0)
|
| 614 |
+
if not need_head_weights:
|
| 615 |
+
# average attention weights over heads
|
| 616 |
+
attn_weights_output = attn_weights_output.mean(dim=0)
|
| 617 |
+
|
| 618 |
+
return attn, attn_weights_output
|
| 619 |
+
|
| 620 |
+
class LucaGPLMRobertaLMHead(nn.Module):
|
| 621 |
+
def __init__(self, embed_dim, output_dim):
|
| 622 |
+
super().__init__()
|
| 623 |
+
self.dense = nn.Linear(embed_dim, embed_dim)
|
| 624 |
+
self.layer_norm = LucaGPLM1bLayerNorm(embed_dim)
|
| 625 |
+
# 使用标准的 nn.Linear
|
| 626 |
+
self.decoder = nn.Linear(embed_dim, output_dim, bias=False)
|
| 627 |
+
self.bias = nn.Parameter(torch.zeros(output_dim))
|
| 628 |
+
|
| 629 |
+
def forward(self, features):
|
| 630 |
+
x = self.dense(features)
|
| 631 |
+
x = gelu(x)
|
| 632 |
+
x = self.layer_norm(x)
|
| 633 |
+
# project back to size of vocabulary with bias
|
| 634 |
+
# x = F.linear(x, self.weight) + self.bias
|
| 635 |
+
x = self.decoder(x) + self.bias
|
| 636 |
+
return x
|
| 637 |
+
|
| 638 |
+
class LucaGPLMTransformerLayer(nn.Module):
|
| 639 |
+
def __init__(
|
| 640 |
+
self,
|
| 641 |
+
embed_dim,
|
| 642 |
+
ffn_embed_dim,
|
| 643 |
+
attention_heads,
|
| 644 |
+
add_bias_kv=True,
|
| 645 |
+
use_lucagplm1b_layer_norm=False,
|
| 646 |
+
use_rotary_embeddings: bool=True,
|
| 647 |
+
):
|
| 648 |
+
super().__init__()
|
| 649 |
+
self.embed_dim = embed_dim
|
| 650 |
+
self.ffn_embed_dim = ffn_embed_dim
|
| 651 |
+
self.attention_heads = attention_heads
|
| 652 |
+
self.use_rotary_embeddings = use_rotary_embeddings
|
| 653 |
+
|
| 654 |
+
LucaGPLMLayerNorm = LucaGPLM1bLayerNorm if use_lucagplm1b_layer_norm else LucaGPLM1LayerNorm
|
| 655 |
+
|
| 656 |
+
self.pre_layer_norm = LucaGPLMLayerNorm(self.embed_dim)
|
| 657 |
+
|
| 658 |
+
self.self_attn = LucaGPLMMultiheadAttentionWithSDPA(
|
| 659 |
+
self.embed_dim,
|
| 660 |
+
self.attention_heads,
|
| 661 |
+
add_bias_kv=add_bias_kv,
|
| 662 |
+
add_zero_attn=False,
|
| 663 |
+
self_attention=True,
|
| 664 |
+
use_rotary_embeddings=self.use_rotary_embeddings,
|
| 665 |
+
)
|
| 666 |
+
|
| 667 |
+
# post layer norm
|
| 668 |
+
self.post_layer_norm = LucaGPLMLayerNorm(self.embed_dim)
|
| 669 |
+
|
| 670 |
+
# dimension increase by the fully connected layer
|
| 671 |
+
self.fc1 = nn.Linear(self.embed_dim, self.ffn_embed_dim)
|
| 672 |
+
|
| 673 |
+
# dimension reduction by the fully connected layer
|
| 674 |
+
self.fc2 = nn.Linear(self.ffn_embed_dim, self.embed_dim)
|
| 675 |
+
|
| 676 |
+
def forward(
|
| 677 |
+
self,
|
| 678 |
+
x,
|
| 679 |
+
self_attn_mask=None,
|
| 680 |
+
self_attn_padding_mask=None,
|
| 681 |
+
need_head_weights=False
|
| 682 |
+
):
|
| 683 |
+
residual = x
|
| 684 |
+
x = self.pre_layer_norm(x)
|
| 685 |
+
x, attn = self.self_attn(
|
| 686 |
+
query=x,
|
| 687 |
+
key=x,
|
| 688 |
+
value=x,
|
| 689 |
+
key_padding_mask=self_attn_padding_mask,
|
| 690 |
+
need_weights=True,
|
| 691 |
+
need_head_weights=need_head_weights,
|
| 692 |
+
attn_mask=self_attn_mask,
|
| 693 |
+
)
|
| 694 |
+
x = residual + x
|
| 695 |
+
|
| 696 |
+
residual = x
|
| 697 |
+
x = self.post_layer_norm(x)
|
| 698 |
+
x = gelu(self.fc1(x))
|
| 699 |
+
x = self.fc2(x)
|
| 700 |
+
x = residual + x
|
| 701 |
+
|
| 702 |
+
return x, attn
|
| 703 |
+
|
| 704 |
+
class LucaGPLMEmbeddings(nn.Module):
|
| 705 |
+
def __init__(self, config: LucaGPLMConfig):
|
| 706 |
+
super().__init__()
|
| 707 |
+
|
| 708 |
+
# Store config flags for forward pass
|
| 709 |
+
self.no_position_embeddings = getattr(config, 'no_position_embeddings', False)
|
| 710 |
+
self.no_token_type_embeddings = getattr(config, 'no_token_type_embeddings', False)
|
| 711 |
+
self.use_embed_layer_norm = getattr(config, 'use_embed_layer_norm', True)
|
| 712 |
+
self.embed_scale = getattr(config, 'embed_scale', 1.0)
|
| 713 |
+
self.token_dropout = getattr(config, 'token_dropout', False)
|
| 714 |
+
|
| 715 |
+
# Token ids for special tokens (matching old model)
|
| 716 |
+
self.mask_idx = getattr(config, 'mask_token_id', 4)
|
| 717 |
+
self.padding_idx = getattr(config, 'pad_token_id', 0)
|
| 718 |
+
|
| 719 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
| 720 |
+
|
| 721 |
+
# Only create position embeddings if not disabled
|
| 722 |
+
if not self.no_position_embeddings:
|
| 723 |
+
self.embed_pos = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
| 724 |
+
else:
|
| 725 |
+
self.embed_pos = None
|
| 726 |
+
|
| 727 |
+
# Only create token type embeddings if not disabled
|
| 728 |
+
if not self.no_token_type_embeddings:
|
| 729 |
+
self.embed_type = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
| 730 |
+
else:
|
| 731 |
+
self.embed_type = None
|
| 732 |
+
|
| 733 |
+
# Only create layer norm if enabled
|
| 734 |
+
if self.use_embed_layer_norm:
|
| 735 |
+
self.embed_layer_norm = LucaGPLM1bLayerNorm(config.hidden_size)
|
| 736 |
+
else:
|
| 737 |
+
self.embed_layer_norm = None
|
| 738 |
+
|
| 739 |
+
def forward(
|
| 740 |
+
self,
|
| 741 |
+
input_ids: torch.Tensor,
|
| 742 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 743 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 744 |
+
) -> torch.Tensor:
|
| 745 |
+
input_shape = input_ids.size()
|
| 746 |
+
seq_length = input_shape[1]
|
| 747 |
+
|
| 748 |
+
# Start with token embeddings and apply embed_scale
|
| 749 |
+
inputs_embeds = self.embed_scale * self.embed_tokens(input_ids)
|
| 750 |
+
|
| 751 |
+
# Add position embeddings if enabled
|
| 752 |
+
if not self.no_position_embeddings and self.embed_pos is not None:
|
| 753 |
+
if position_ids is None:
|
| 754 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
|
| 755 |
+
position_ids = position_ids.unsqueeze(0).expand(input_shape)
|
| 756 |
+
position_embeddings = self.embed_scale * self.embed_pos(position_ids)
|
| 757 |
+
inputs_embeds = inputs_embeds + position_embeddings
|
| 758 |
+
|
| 759 |
+
# Add token type embeddings if enabled
|
| 760 |
+
if not self.no_token_type_embeddings and self.embed_type is not None:
|
| 761 |
+
if token_type_ids is None:
|
| 762 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=input_ids.device)
|
| 763 |
+
token_type_embeddings = self.embed_scale * self.embed_type(token_type_ids)
|
| 764 |
+
inputs_embeds = inputs_embeds + token_type_embeddings
|
| 765 |
+
|
| 766 |
+
# Apply layer norm if enabled
|
| 767 |
+
if self.use_embed_layer_norm and self.embed_layer_norm is not None:
|
| 768 |
+
embeddings = self.embed_layer_norm(inputs_embeds)
|
| 769 |
+
else:
|
| 770 |
+
embeddings = inputs_embeds
|
| 771 |
+
|
| 772 |
+
# Apply token dropout (matching old model behavior)
|
| 773 |
+
if self.token_dropout and self.training:
|
| 774 |
+
# Zero out masked token embeddings
|
| 775 |
+
embeddings = embeddings.masked_fill((input_ids == self.mask_idx).unsqueeze(-1), 0.0)
|
| 776 |
+
|
| 777 |
+
# Apply token dropout scaling
|
| 778 |
+
mask_ratio_train = 0.15 * 0.8
|
| 779 |
+
padding_mask = input_ids.eq(self.padding_idx)
|
| 780 |
+
src_lengths = (~padding_mask).sum(-1)
|
| 781 |
+
mask_ratio_observed = (input_ids == self.mask_idx).sum(-1).to(embeddings.dtype) / src_lengths
|
| 782 |
+
embeddings = embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]
|
| 783 |
+
|
| 784 |
+
# Apply padding mask to embeddings
|
| 785 |
+
padding_mask = input_ids.eq(self.padding_idx)
|
| 786 |
+
if padding_mask.any():
|
| 787 |
+
embeddings = embeddings * (1 - padding_mask.unsqueeze(-1).type_as(embeddings))
|
| 788 |
+
|
| 789 |
+
return embeddings
|
| 790 |
+
|
| 791 |
+
class LucaGPLMEncoder(nn.Module):
|
| 792 |
+
def __init__(self, config: LucaGPLMConfig):
|
| 793 |
+
super().__init__()
|
| 794 |
+
|
| 795 |
+
self.layers = nn.ModuleList([
|
| 796 |
+
LucaGPLMTransformerLayer(
|
| 797 |
+
config.hidden_size,
|
| 798 |
+
4 * config.hidden_size, # ffn_embed_dim = 4 * embed_dim
|
| 799 |
+
config.num_attention_heads,
|
| 800 |
+
add_bias_kv=False,
|
| 801 |
+
use_lucagplm1b_layer_norm=True,
|
| 802 |
+
use_rotary_embeddings=True,
|
| 803 |
+
)
|
| 804 |
+
for _ in range(config.num_hidden_layers)
|
| 805 |
+
])
|
| 806 |
+
|
| 807 |
+
self.use_last_layer_norm = getattr(config, 'use_last_layer_norm', True)
|
| 808 |
+
if self.use_last_layer_norm:
|
| 809 |
+
self.last_layer_norm = LucaGPLM1bLayerNorm(config.hidden_size)
|
| 810 |
+
else:
|
| 811 |
+
self.last_layer_norm = None
|
| 812 |
+
|
| 813 |
+
self.padding_idx = config.pad_token_id
|
| 814 |
+
self.gradient_checkpointing = False
|
| 815 |
+
|
| 816 |
+
def forward(
|
| 817 |
+
self,
|
| 818 |
+
hidden_states: torch.Tensor,
|
| 819 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 820 |
+
output_attentions: bool = False,
|
| 821 |
+
output_hidden_states: bool = False,
|
| 822 |
+
return_dict: bool = True,
|
| 823 |
+
need_head_weights: bool = False,
|
| 824 |
+
repr_layers: Optional[List[int]] = None,
|
| 825 |
+
use_last_layer_norm: bool = True,
|
| 826 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
| 827 |
+
all_hidden_states = () if output_hidden_states else None
|
| 828 |
+
all_attentions = () if output_attentions else None
|
| 829 |
+
|
| 830 |
+
if repr_layers is None:
|
| 831 |
+
repr_layers = [-1]
|
| 832 |
+
|
| 833 |
+
# 转换为原始模型的索引系统
|
| 834 |
+
layer_size = len(self.layers)
|
| 835 |
+
repr_layers = [(i + layer_size + 1) % (layer_size + 1) for i in repr_layers]
|
| 836 |
+
repr_layers = set(repr_layers)
|
| 837 |
+
hidden_representations = {}
|
| 838 |
+
|
| 839 |
+
# Process attention mask - 原始模型期望的是padding mask
|
| 840 |
+
if attention_mask is None:
|
| 841 |
+
padding_mask = hidden_states.new_zeros(hidden_states.shape[:2]).eq(self.padding_idx)
|
| 842 |
+
else:
|
| 843 |
+
# 原始模型中 padding_mask 是 True 表示 padding位置
|
| 844 |
+
padding_mask = attention_mask.eq(0)
|
| 845 |
+
|
| 846 |
+
# 0: embedding layer
|
| 847 |
+
if 0 in repr_layers:
|
| 848 |
+
hidden_representations[0] = hidden_states
|
| 849 |
+
|
| 850 |
+
# 转换为 (seq_len, batch_size, hidden_size) 格式,与原始模型一致
|
| 851 |
+
hidden_states = hidden_states.transpose(0, 1)
|
| 852 |
+
|
| 853 |
+
if not padding_mask.any():
|
| 854 |
+
padding_mask = None
|
| 855 |
+
|
| 856 |
+
# 是否需要返回head weights
|
| 857 |
+
if need_head_weights or output_attentions:
|
| 858 |
+
attn_weights = []
|
| 859 |
+
|
| 860 |
+
for layer_idx, layer_module in enumerate(self.layers):
|
| 861 |
+
if output_hidden_states:
|
| 862 |
+
all_hidden_states = all_hidden_states + (hidden_states.transpose(0, 1),)
|
| 863 |
+
|
| 864 |
+
if self.gradient_checkpointing and self.training:
|
| 865 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 866 |
+
layer_module.__call__,
|
| 867 |
+
hidden_states,
|
| 868 |
+
None, # self_attn_mask
|
| 869 |
+
padding_mask,
|
| 870 |
+
need_head_weights or output_attentions,
|
| 871 |
+
)
|
| 872 |
+
else:
|
| 873 |
+
layer_outputs = layer_module(
|
| 874 |
+
hidden_states,
|
| 875 |
+
self_attn_mask=None,
|
| 876 |
+
self_attn_padding_mask=padding_mask,
|
| 877 |
+
need_head_weights=need_head_weights or output_attentions,
|
| 878 |
+
)
|
| 879 |
+
|
| 880 |
+
hidden_states, attn = layer_outputs
|
| 881 |
+
|
| 882 |
+
if (layer_idx + 1) in repr_layers:
|
| 883 |
+
hidden_representations[layer_idx + 1] = hidden_states.transpose(0, 1)
|
| 884 |
+
|
| 885 |
+
if need_head_weights or output_attentions:
|
| 886 |
+
# (H, B, L, L) => (B, H, L, L)
|
| 887 |
+
attn_weights.append(attn.transpose(1, 0))
|
| 888 |
+
|
| 889 |
+
# 应用最后的layer norm
|
| 890 |
+
if self.last_layer_norm is not None and use_last_layer_norm:
|
| 891 |
+
hidden_states = self.last_layer_norm(hidden_states)
|
| 892 |
+
|
| 893 |
+
# 转换回 (batch_size, seq_len, hidden_size) 格式
|
| 894 |
+
hidden_states = hidden_states.transpose(0, 1)
|
| 895 |
+
|
| 896 |
+
# last hidden representation should have layer norm applied
|
| 897 |
+
if (layer_idx + 1) in repr_layers:
|
| 898 |
+
hidden_representations[layer_idx + 1] = hidden_states
|
| 899 |
+
|
| 900 |
+
if output_hidden_states:
|
| 901 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 902 |
+
|
| 903 |
+
if need_head_weights or output_attentions:
|
| 904 |
+
# 将attention weights转换为正确格式
|
| 905 |
+
if attn_weights:
|
| 906 |
+
# B x Layers x H x L x L
|
| 907 |
+
all_attentions = torch.stack(attn_weights, 1)
|
| 908 |
+
if padding_mask is not None:
|
| 909 |
+
attention_mask_expanded = 1 - padding_mask.type_as(all_attentions)
|
| 910 |
+
attention_mask_expanded = attention_mask_expanded.unsqueeze(1) * attention_mask_expanded.unsqueeze(2)
|
| 911 |
+
all_attentions = all_attentions * attention_mask_expanded[:, None, None, :, :]
|
| 912 |
+
|
| 913 |
+
if not output_attentions:
|
| 914 |
+
all_attentions = None
|
| 915 |
+
|
| 916 |
+
if not return_dict:
|
| 917 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
| 918 |
+
|
| 919 |
+
return BaseModelOutput(
|
| 920 |
+
last_hidden_state=hidden_states,
|
| 921 |
+
hidden_states=all_hidden_states,
|
| 922 |
+
attentions=all_attentions,
|
| 923 |
+
)
|
| 924 |
+
|
| 925 |
+
class LucaGPLMPreTrainedModel(PreTrainedModel):
|
| 926 |
+
config_class = LucaGPLMConfig
|
| 927 |
+
base_model_prefix = "lucaone"
|
| 928 |
+
supports_gradient_checkpointing = True
|
| 929 |
+
_no_split_modules = ["LucaGPLMTransformerLayer"]
|
| 930 |
+
|
| 931 |
+
def _init_weights(self, module):
|
| 932 |
+
if isinstance(module, nn.Linear):
|
| 933 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 934 |
+
if module.bias is not None:
|
| 935 |
+
module.bias.data.zero_()
|
| 936 |
+
elif isinstance(module, nn.Embedding):
|
| 937 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 938 |
+
if module.padding_idx is not None:
|
| 939 |
+
module.weight.data[module.padding_idx].zero_()
|
| 940 |
+
elif isinstance(module, (LucaGPLM1LayerNorm, LucaGPLM1bLayerNorm)):
|
| 941 |
+
if hasattr(module, 'weight') and module.weight is not None:
|
| 942 |
+
module.weight.data.fill_(1.0)
|
| 943 |
+
if hasattr(module, 'bias') and module.bias is not None:
|
| 944 |
+
module.bias.data.zero_()
|
| 945 |
+
|
| 946 |
+
class LucaGPLMModel(LucaGPLMPreTrainedModel):
|
| 947 |
+
"""
|
| 948 |
+
The LucaGPLM model for extracting sequence representations and optionally predicting contacts.
|
| 949 |
+
Based on the original LucaGPLM implementation but restructured to use modern transformers architecture.
|
| 950 |
+
"""
|
| 951 |
+
|
| 952 |
+
def __init__(self, config: LucaGPLMConfig):
|
| 953 |
+
super().__init__(config)
|
| 954 |
+
self.config = config
|
| 955 |
+
self.embeddings = LucaGPLMEmbeddings(self.config)
|
| 956 |
+
self.encoder = LucaGPLMEncoder(self.config)
|
| 957 |
+
self.post_init()
|
| 958 |
+
|
| 959 |
+
def get_input_embeddings(self):
|
| 960 |
+
return self.embeddings.embed_tokens
|
| 961 |
+
|
| 962 |
+
def set_input_embeddings(self, value):
|
| 963 |
+
self.embeddings.embed_tokens = value
|
| 964 |
+
|
| 965 |
+
def forward(
|
| 966 |
+
self,
|
| 967 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 968 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 969 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 970 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 971 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 972 |
+
output_attentions: Optional[bool] = None,
|
| 973 |
+
output_hidden_states: Optional[bool] = None,
|
| 974 |
+
return_contacts: Optional[bool] = None,
|
| 975 |
+
return_dict: Optional[bool] = None,
|
| 976 |
+
need_head_weights: Optional[bool] = None,
|
| 977 |
+
repr_layers: Optional[List[int]] = None,
|
| 978 |
+
use_last_layer_norm: Optional[bool] = True,
|
| 979 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
| 980 |
+
|
| 981 |
+
output_attentions = output_attentions if output_attentions is not None else getattr(self.config, 'output_attentions', False)
|
| 982 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else getattr(self.config, 'output_hidden_states', False)
|
| 983 |
+
return_contacts = return_contacts if return_contacts is not None else False
|
| 984 |
+
return_dict = return_dict if return_dict is not None else getattr(self.config, 'use_return_dict', True)
|
| 985 |
+
need_head_weights = need_head_weights if need_head_weights is not None else return_contacts # Need attention weights for contacts
|
| 986 |
+
use_last_layer_norm = use_last_layer_norm if use_last_layer_norm is not None else True
|
| 987 |
+
|
| 988 |
+
# Force output_attentions=True when return_contacts=True since we need attention weights
|
| 989 |
+
if return_contacts:
|
| 990 |
+
output_attentions = True
|
| 991 |
+
need_head_weights = True
|
| 992 |
+
|
| 993 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 994 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 995 |
+
elif input_ids is not None:
|
| 996 |
+
input_shape = input_ids.size()
|
| 997 |
+
elif inputs_embeds is not None:
|
| 998 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 999 |
+
else:
|
| 1000 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 1001 |
+
|
| 1002 |
+
batch_size, seq_length = input_shape
|
| 1003 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1004 |
+
|
| 1005 |
+
# Create attention mask if not provided
|
| 1006 |
+
if attention_mask is None:
|
| 1007 |
+
attention_mask = torch.ones(input_shape, device=device)
|
| 1008 |
+
|
| 1009 |
+
# Get embeddings
|
| 1010 |
+
if inputs_embeds is None:
|
| 1011 |
+
embedding_output = self.embeddings(
|
| 1012 |
+
input_ids=input_ids,
|
| 1013 |
+
position_ids=position_ids,
|
| 1014 |
+
token_type_ids=token_type_ids,
|
| 1015 |
+
)
|
| 1016 |
+
else:
|
| 1017 |
+
embedding_output = inputs_embeds
|
| 1018 |
+
|
| 1019 |
+
# Pass through encoder
|
| 1020 |
+
encoder_outputs = self.encoder(
|
| 1021 |
+
embedding_output,
|
| 1022 |
+
attention_mask=attention_mask,
|
| 1023 |
+
output_attentions=output_attentions,
|
| 1024 |
+
output_hidden_states=output_hidden_states,
|
| 1025 |
+
return_dict=return_dict,
|
| 1026 |
+
need_head_weights=need_head_weights,
|
| 1027 |
+
repr_layers=repr_layers,
|
| 1028 |
+
use_last_layer_norm=use_last_layer_norm,
|
| 1029 |
+
)
|
| 1030 |
+
|
| 1031 |
+
sequence_output = encoder_outputs[0]
|
| 1032 |
+
|
| 1033 |
+
# Handle contact prediction
|
| 1034 |
+
contacts = None
|
| 1035 |
+
if return_contacts and encoder_outputs.attentions is not None:
|
| 1036 |
+
# Simple contact prediction using attention weights
|
| 1037 |
+
# This is a simplified implementation - you can enhance this later
|
| 1038 |
+
attentions = encoder_outputs.attentions
|
| 1039 |
+
# Average over layers and heads, then symmetrize
|
| 1040 |
+
averaged_attention = attentions.mean(dim=(1, 2)) # Average over layers and heads
|
| 1041 |
+
contacts = (averaged_attention + averaged_attention.transpose(-1, -2)) / 2
|
| 1042 |
+
|
| 1043 |
+
# Remove special tokens (BOS/EOS) if present
|
| 1044 |
+
if attention_mask is not None:
|
| 1045 |
+
# Find actual sequence positions (non-padding)
|
| 1046 |
+
seq_lens = attention_mask.sum(dim=1)
|
| 1047 |
+
# For now, keep the full contact map - you can trim special tokens later if needed
|
| 1048 |
+
|
| 1049 |
+
if not return_dict:
|
| 1050 |
+
outputs = (sequence_output, ) + encoder_outputs[1:]
|
| 1051 |
+
if contacts is not None:
|
| 1052 |
+
outputs = outputs + (contacts,)
|
| 1053 |
+
return outputs
|
| 1054 |
+
|
| 1055 |
+
# Create output object with contacts
|
| 1056 |
+
output = BaseModelOutput(
|
| 1057 |
+
last_hidden_state=sequence_output,
|
| 1058 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 1059 |
+
attentions=encoder_outputs.attentions,
|
| 1060 |
+
)
|
| 1061 |
+
|
| 1062 |
+
# Add contacts as an attribute if computed
|
| 1063 |
+
if contacts is not None:
|
| 1064 |
+
output.contacts = contacts
|
| 1065 |
+
|
| 1066 |
+
return output
|
| 1067 |
+
|
| 1068 |
+
class LucaGPLMForMaskedLM(LucaGPLMPreTrainedModel):
|
| 1069 |
+
def __init__(self, config):
|
| 1070 |
+
super().__init__(config)
|
| 1071 |
+
# 基础编码器
|
| 1072 |
+
self.lucaone = LucaGPLMModel(config)
|
| 1073 |
+
|
| 1074 |
+
# MLM 预测头
|
| 1075 |
+
self.lm_head = LucaGPLMRobertaLMHead(
|
| 1076 |
+
embed_dim=config.hidden_size,
|
| 1077 |
+
output_dim=config.vocab_size
|
| 1078 |
+
)
|
| 1079 |
+
self._tied_weights_keys = [
|
| 1080 |
+
"lucaone.embeddings.embed_tokens.weight",
|
| 1081 |
+
"lm_head.decoder.weight"
|
| 1082 |
+
]
|
| 1083 |
+
# 初始化权重并进行权重绑定
|
| 1084 |
+
self.post_init()
|
| 1085 |
+
|
| 1086 |
+
def get_input_embeddings(self):
|
| 1087 |
+
return self.lucaone.get_input_embeddings()
|
| 1088 |
+
|
| 1089 |
+
def get_output_embeddings(self):
|
| 1090 |
+
return self.lm_head.decoder
|
| 1091 |
+
|
| 1092 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1093 |
+
self.lm_head.decoder = new_embeddings
|
| 1094 |
+
|
| 1095 |
+
def forward(
|
| 1096 |
+
self,
|
| 1097 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1098 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1099 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1100 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1101 |
+
labels: Optional[torch.Tensor] = None, # MLM 训练时的标签
|
| 1102 |
+
output_attentions: Optional[bool] = None,
|
| 1103 |
+
output_hidden_states: Optional[bool] = None,
|
| 1104 |
+
return_dict: Optional[bool] = None,
|
| 1105 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
| 1106 |
+
|
| 1107 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1108 |
+
|
| 1109 |
+
# 1. 获取基础模型的输出 (Hidden States)
|
| 1110 |
+
outputs = self.lucaone(
|
| 1111 |
+
input_ids,
|
| 1112 |
+
attention_mask=attention_mask,
|
| 1113 |
+
token_type_ids=token_type_ids,
|
| 1114 |
+
position_ids=position_ids,
|
| 1115 |
+
output_attentions=output_attentions,
|
| 1116 |
+
output_hidden_states=output_hidden_states,
|
| 1117 |
+
return_dict=return_dict,
|
| 1118 |
+
)
|
| 1119 |
+
|
| 1120 |
+
sequence_output = outputs[0] # (batch_size, seq_len, hidden_size)
|
| 1121 |
+
|
| 1122 |
+
# 2. 通过 MLM Head 得到预测结果 (Logits)
|
| 1123 |
+
prediction_scores = self.lm_head(sequence_output)
|
| 1124 |
+
|
| 1125 |
+
masked_lm_loss = None
|
| 1126 |
+
if labels is not None:
|
| 1127 |
+
# 3. 计算 MLM Loss
|
| 1128 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-100) # 默认 ignore_index=-100
|
| 1129 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 1130 |
+
|
| 1131 |
+
if not return_dict:
|
| 1132 |
+
output = (prediction_scores,) + outputs[2:]
|
| 1133 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 1134 |
+
|
| 1135 |
+
return MaskedLMOutput(
|
| 1136 |
+
loss=masked_lm_loss,
|
| 1137 |
+
logits=prediction_scores,
|
| 1138 |
+
hidden_states=outputs.hidden_states,
|
| 1139 |
+
attentions=outputs.attentions,
|
| 1140 |
+
)
|
| 1141 |
+
|
| 1142 |
+
class LucaGPLMForSequenceClassification(LucaGPLMPreTrainedModel):
|
| 1143 |
+
def __init__(self, config):
|
| 1144 |
+
super().__init__(config)
|
| 1145 |
+
self.num_labels = config.classifier_num_labels
|
| 1146 |
+
self.task_level = config.task_level
|
| 1147 |
+
self.task_type = config.task_type
|
| 1148 |
+
assert self.task_level == "seq_level"
|
| 1149 |
+
self.classifier_pooling_type = config.classifier_pooling_type
|
| 1150 |
+
self.classifier_loss_type = config.classifier_loss_type
|
| 1151 |
+
self.classifier_loss_reduction = config.classifier_loss_reduction
|
| 1152 |
+
self.classifier_pos_weight = config.classifier_pos_weight
|
| 1153 |
+
self.classifier_weight = config.classifier_weight
|
| 1154 |
+
self.lucaone = LucaGPLMModel(config) # 基础模型
|
| 1155 |
+
if self.classifier_pooling_type == "value_attention":
|
| 1156 |
+
self.pooler = LucaGPLMGlobalMaskValueAttentionPooling1D(config.hidden_size)
|
| 1157 |
+
elif self.classifier_pooling_type == "context_attention":
|
| 1158 |
+
self.pooler = LucaGPLMGlobalMaskContextAttentionPooling1D(embed_size=config.hidden_size)
|
| 1159 |
+
elif self.classifier_pooling_type == "weighted_attention":
|
| 1160 |
+
self.pooler = LucaGPLMGlobalMaskWeightedAttentionPooling1D(embed_size=config.hidden_size)
|
| 1161 |
+
else:
|
| 1162 |
+
self.pooler = None
|
| 1163 |
+
self.dropout = nn.Dropout(config.classifier_dropout_prob)
|
| 1164 |
+
|
| 1165 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1166 |
+
if self.task_type == "multi_class":
|
| 1167 |
+
weight = None
|
| 1168 |
+
if self.classifier_weight:
|
| 1169 |
+
if isinstance(self.classifier_weight, str) or isinstance(self.classifier_weight, int):
|
| 1170 |
+
weight = torch.tensor([float(self.classifier_weight)] * self.num_labels, dtype=torch.float32)
|
| 1171 |
+
elif isinstance(self.classifier_weight, float):
|
| 1172 |
+
weight = torch.tensor([self.classifier_weight] * self.num_labels, dtype=torch.float32)
|
| 1173 |
+
elif isinstance(self.classifier_weight, list):
|
| 1174 |
+
weight = torch.tensor(self.classifier_weight, dtype=torch.float32)
|
| 1175 |
+
self.loss_fct = nn.CrossEntropyLoss(weight=weight, reduction="mean")
|
| 1176 |
+
elif self.task_type == "binary_class":
|
| 1177 |
+
pos_weight = None
|
| 1178 |
+
if self.classifier_pos_weight:
|
| 1179 |
+
if isinstance(self.classifier_pos_weight, str) or isinstance(self.classifier_pos_weight, int):
|
| 1180 |
+
pos_weight = torch.tensor([float(self.classifier_pos_weight)], dtype=torch.float32)
|
| 1181 |
+
elif isinstance(self.classifier_pos_weight, float):
|
| 1182 |
+
pos_weight = torch.tensor([self.classifier_pos_weight], dtype=torch.float32)
|
| 1183 |
+
self.loss_fct = nn.BCEWithLogitsLoss(pos_weight=pos_weight, reduction="mean")
|
| 1184 |
+
elif self.task_type == "regression":
|
| 1185 |
+
if self.classifier_loss_type == "mae":
|
| 1186 |
+
self.loss_fct = nn.L1Loss(reduction="mean")
|
| 1187 |
+
else:
|
| 1188 |
+
self.loss_fct = nn.MSELoss(reduction="mean")
|
| 1189 |
+
elif self.task_type == "multi_label":
|
| 1190 |
+
pos_weight = None
|
| 1191 |
+
if self.classifier_pos_weight:
|
| 1192 |
+
if isinstance(self.classifier_pos_weight, str) or isinstance(self.classifier_pos_weight, int):
|
| 1193 |
+
pos_weight = torch.tensor([float(self.classifier_pos_weight)] * self.num_labels, dtype=torch.float32)
|
| 1194 |
+
elif isinstance(self.classifier_pos_weight, float):
|
| 1195 |
+
pos_weight = torch.tensor([self.classifier_pos_weight] * self.num_labels, dtype=torch.float32)
|
| 1196 |
+
self.loss_fct = nn.BCEWithLogitsLoss(pos_weight=pos_weight, reduction=self.classifier_loss_reduction)
|
| 1197 |
+
else:
|
| 1198 |
+
raise ValueError("Invalid task type: %s" % self.task_type)
|
| 1199 |
+
self.post_init()
|
| 1200 |
+
|
| 1201 |
+
def forward(
|
| 1202 |
+
self,
|
| 1203 |
+
input_ids=None,
|
| 1204 |
+
token_type_ids=None,
|
| 1205 |
+
attention_mask=None,
|
| 1206 |
+
labels=None,
|
| 1207 |
+
return_dict=None
|
| 1208 |
+
):
|
| 1209 |
+
return_dict = return_dict if return_dict is not None else getattr(self.config, 'use_return_dict', True)
|
| 1210 |
+
outputs = self.lucaone(
|
| 1211 |
+
input_ids,
|
| 1212 |
+
token_type_ids=token_type_ids,
|
| 1213 |
+
attention_mask=attention_mask,
|
| 1214 |
+
return_dict=return_dict
|
| 1215 |
+
)
|
| 1216 |
+
if self.pooler is not None:
|
| 1217 |
+
pooled_output = self.pooler(outputs[0])
|
| 1218 |
+
elif self.classifier_pooling_type == "cls":
|
| 1219 |
+
# 取 CLS token
|
| 1220 |
+
pooled_output = outputs[0][:, 0, :]
|
| 1221 |
+
elif self.classifier_pooling_type == "mean":
|
| 1222 |
+
pooled_output = outputs[0].mean(dim=1)
|
| 1223 |
+
else:
|
| 1224 |
+
raise ValueError("Invalid classifier pooling type: %s" % self.classifier_pooling_type)
|
| 1225 |
+
|
| 1226 |
+
pooled_output = self.dropout(pooled_output)
|
| 1227 |
+
logits = self.classifier(pooled_output)
|
| 1228 |
+
|
| 1229 |
+
loss = None
|
| 1230 |
+
if labels is not None:
|
| 1231 |
+
if self.task_type == "multi_class":
|
| 1232 |
+
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1233 |
+
elif self.task_type == "binary_class":
|
| 1234 |
+
loss = self.loss_fct(logits.view(-1), labels.view(-1).float())
|
| 1235 |
+
elif self.task_type == "regression":
|
| 1236 |
+
loss = self.loss_fct(logits.view(-1), labels.view(-1))
|
| 1237 |
+
elif self.task_type == "multi_label":
|
| 1238 |
+
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1, self.num_labels).float())
|
| 1239 |
+
else:
|
| 1240 |
+
raise ValueError("Invalid task type: %s" % self.task_type)
|
| 1241 |
+
|
| 1242 |
+
if not return_dict:
|
| 1243 |
+
output = (logits,) + outputs[1:]
|
| 1244 |
+
return ((loss,) + output) if loss is not None else output
|
| 1245 |
+
|
| 1246 |
+
return SequenceClassifierOutput(loss=loss, logits=logits)
|
| 1247 |
+
|
| 1248 |
+
class LucaGPLMForTokenClassification(LucaGPLMPreTrainedModel):
|
| 1249 |
+
def __init__(self, config):
|
| 1250 |
+
super().__init__(config)
|
| 1251 |
+
self.num_labels = config.classifier_num_labels
|
| 1252 |
+
self.task_level = config.task_level
|
| 1253 |
+
self.task_type = config.task_type
|
| 1254 |
+
assert self.task_level == "token_level"
|
| 1255 |
+
self.classifier_pooling_type = config.classifier_pooling_type
|
| 1256 |
+
self.classifier_loss_type = config.classifier_loss_type
|
| 1257 |
+
self.classifier_loss_reduction = config.classifier_loss_reduction
|
| 1258 |
+
self.classifier_pos_weight = config.classifier_pos_weight
|
| 1259 |
+
self.classifier_weight = config.classifier_weight
|
| 1260 |
+
self.lucaone = LucaGPLMModel(config) # 基础模型
|
| 1261 |
+
self.dropout = nn.Dropout(config.classifier_dropout_prob)
|
| 1262 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1263 |
+
if self.task_type == "multi_class":
|
| 1264 |
+
weight = None
|
| 1265 |
+
if self.classifier_weight:
|
| 1266 |
+
# [1, 1, 1, ,1, 1...] length: num_labels
|
| 1267 |
+
if isinstance(self.classifier_weight, str) or isinstance(self.classifier_weight, int):
|
| 1268 |
+
weight = torch.tensor([float(self.classifier_weight)] * self.num_labels, dtype=torch.float32)
|
| 1269 |
+
elif isinstance(self.classifier_weight, float):
|
| 1270 |
+
weight = torch.tensor([self.classifier_weight] * self.num_labels, dtype=torch.float32)
|
| 1271 |
+
elif isinstance(self.classifier_weight, list):
|
| 1272 |
+
weight = torch.tensor(self.classifier_weight, dtype=torch.float32)
|
| 1273 |
+
self.loss_fct = nn.CrossEntropyLoss(weight=weight, reduction="mean")
|
| 1274 |
+
elif self.task_type == "binary_class":
|
| 1275 |
+
pos_weight = None
|
| 1276 |
+
if self.classifier_pos_weight:
|
| 1277 |
+
if isinstance(self.classifier_pos_weight, str) or isinstance(self.classifier_pos_weight, int):
|
| 1278 |
+
pos_weight = torch.tensor([float(self.classifier_pos_weight)], dtype=torch.float32)
|
| 1279 |
+
elif isinstance(self.classifier_pos_weight, float):
|
| 1280 |
+
pos_weight = torch.tensor([float(self.classifier_pos_weight)], dtype=torch.float32)
|
| 1281 |
+
self.loss_fct = nn.BCEWithLogitsLoss(pos_weight=pos_weight, reduction="mean")
|
| 1282 |
+
elif self.task_type == "regression":
|
| 1283 |
+
if self.classifier_loss_type == "mae":
|
| 1284 |
+
self.loss_fct = nn.L1Loss(reduction="mean")
|
| 1285 |
+
else:
|
| 1286 |
+
self.loss_fct = nn.MSELoss(reduction="mean")
|
| 1287 |
+
elif self.task_type == "multi_label":
|
| 1288 |
+
pos_weight = None
|
| 1289 |
+
if self.classifier_pos_weight:
|
| 1290 |
+
if isinstance(self.classifier_pos_weight, str) or isinstance(self.classifier_pos_weight, int):
|
| 1291 |
+
pos_weight = torch.tensor([float(self.classifier_pos_weight)] * self.num_labels, dtype=torch.float32)
|
| 1292 |
+
elif isinstance(self.classifier_pos_weight, float):
|
| 1293 |
+
pos_weight = torch.tensor([self.classifier_pos_weight] * self.num_labels, dtype=torch.float32)
|
| 1294 |
+
self.loss_fct = nn.BCEWithLogitsLoss(pos_weight=pos_weight, reduction=self.classifier_loss_reduction)
|
| 1295 |
+
else:
|
| 1296 |
+
raise ValueError("Invalid task type: %s" % self.task_type)
|
| 1297 |
+
self.post_init()
|
| 1298 |
+
|
| 1299 |
+
def forward(
|
| 1300 |
+
self,
|
| 1301 |
+
input_ids=None,
|
| 1302 |
+
token_type_ids=None,
|
| 1303 |
+
attention_mask=None,
|
| 1304 |
+
labels=None,
|
| 1305 |
+
return_dict=None
|
| 1306 |
+
):
|
| 1307 |
+
return_dict = return_dict if return_dict is not None else getattr(self.config, 'use_return_dict', True)
|
| 1308 |
+
outputs = self.lucaone(
|
| 1309 |
+
input_ids,
|
| 1310 |
+
token_type_ids=token_type_ids,
|
| 1311 |
+
attention_mask=attention_mask,
|
| 1312 |
+
return_dict=return_dict
|
| 1313 |
+
)
|
| 1314 |
+
sequence_output = outputs[0][:, 1:-1, :] # (B, L, H)
|
| 1315 |
+
|
| 1316 |
+
sequence_output = self.dropout(sequence_output)
|
| 1317 |
+
logits = self.classifier(sequence_output)
|
| 1318 |
+
|
| 1319 |
+
loss = None
|
| 1320 |
+
if labels is not None:
|
| 1321 |
+
if self.task_type == "multi_class":
|
| 1322 |
+
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1323 |
+
elif self.task_type == "binary_class":
|
| 1324 |
+
loss = self.loss_fct(logits.view(-1), labels.view(-1).float())
|
| 1325 |
+
elif self.task_type == "regression":
|
| 1326 |
+
loss = self.loss_fct(logits.view(-1), labels.view(-1))
|
| 1327 |
+
elif self.task_type == "multi_label":
|
| 1328 |
+
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1, self.num_labels).float())
|
| 1329 |
+
else:
|
| 1330 |
+
raise ValueError("Invalid task type: %s" % self.task_type)
|
| 1331 |
+
|
| 1332 |
+
|
| 1333 |
+
if not return_dict:
|
| 1334 |
+
output = (logits,) + outputs[1:]
|
| 1335 |
+
return ((loss,) + output) if loss is not None else output
|
| 1336 |
+
return TokenClassifierOutput(loss=loss, logits=logits)
|
| 1337 |
+
|
| 1338 |
+
__all__ = [
|
| 1339 |
+
"LucaGPLMModel",
|
| 1340 |
+
"LucaGPLMPreTrainedModel",
|
| 1341 |
+
"LucaGPLMForMaskedLM",
|
| 1342 |
+
"LucaGPLMForSequenceClassification",
|
| 1343 |
+
"LucaGPLMForTokenClassification"
|
| 1344 |
+
]
|
tokenization_lucaone.py
ADDED
|
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# encoding: utf-8
|
| 3 |
+
'''
|
| 4 |
+
@license: (C) Copyright 2025, Hey.
|
| 5 |
+
@author: Hey
|
| 6 |
+
@email: [email protected]
|
| 7 |
+
@tel: 137****6540
|
| 8 |
+
@datetime: 2025/12/30 11:33
|
| 9 |
+
@project: lucaone
|
| 10 |
+
@file: tokenization_lucaone
|
| 11 |
+
@desc: tokenization_lucaone
|
| 12 |
+
'''
|
| 13 |
+
|
| 14 |
+
import os
|
| 15 |
+
import json
|
| 16 |
+
import itertools
|
| 17 |
+
from typing import List, Optional, Dict, Any, Tuple, Union
|
| 18 |
+
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
|
| 19 |
+
|
| 20 |
+
def gene_seq_replace(seq):
|
| 21 |
+
"""
|
| 22 |
+
Gene sequence preprocessing: A->1, U/T->2, C->3, G->4, N->5
|
| 23 |
+
Optimized for performance.
|
| 24 |
+
"""
|
| 25 |
+
# 使用字典映射比 if-else 判断快
|
| 26 |
+
mapping = {
|
| 27 |
+
'A': '1', 'a': '1',
|
| 28 |
+
'T': '2', 't': '2', 'U': '2', 'u': '2',
|
| 29 |
+
'C': '3', 'c': '3',
|
| 30 |
+
'G': '4', 'g': '4'
|
| 31 |
+
}
|
| 32 |
+
# 对于不在字典中的字符(如 N),默认返回 '5'
|
| 33 |
+
return "".join([mapping.get(ch, '5') for ch in seq])
|
| 34 |
+
|
| 35 |
+
class LucaGPLMTokenizer(PreTrainedTokenizer):
|
| 36 |
+
"""
|
| 37 |
+
HuggingFace-compatible tokenizer that performs identical tokenization
|
| 38 |
+
to the old model's Alphabet class.
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
# Vocabulary definitions matching the old model
|
| 42 |
+
gene_prepend_toks = ['[PAD]', '[UNK]']
|
| 43 |
+
gene_append_toks = ['[CLS]', '[SEP]', '[MASK]']
|
| 44 |
+
gene_standard_toks = ['1', '2', '3', '4', '5', '.', '-', '*']
|
| 45 |
+
|
| 46 |
+
prot_prepend_toks = ['[PAD]', '[UNK]']
|
| 47 |
+
prot_append_toks = ['[CLS]', '[SEP]', '[MASK]']
|
| 48 |
+
prot_standard_toks = ['L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D', 'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C', 'X', 'B', 'U', 'Z', 'O', 'J', '.', '-', '*']
|
| 49 |
+
|
| 50 |
+
gene_prot_prepend_toks = ['[PAD]', '[UNK]']
|
| 51 |
+
gene_prot_append_toks = ['[CLS]', '[SEP]', '[MASK]']
|
| 52 |
+
# EXACT VOCABULARY ORDER FROM ORIGINAL ALPHABET CLASS
|
| 53 |
+
|
| 54 |
+
gene_prot_standard_toks = [
|
| 55 |
+
'1', # 5 - gene A (after gene_seq_replace)
|
| 56 |
+
'2', # 6 - gene T/U (after gene_seq_replace)
|
| 57 |
+
'3', # 7 - gene C (after gene_seq_replace)
|
| 58 |
+
'4', # 8 - gene G (after gene_seq_replace)
|
| 59 |
+
'5', # 9 - gene N/unknown
|
| 60 |
+
'L', # 10 - protein
|
| 61 |
+
'A', # 11 - protein
|
| 62 |
+
'G', # 12 - protein
|
| 63 |
+
'V', # 13 - protein
|
| 64 |
+
'S', # 14 - protein
|
| 65 |
+
'E', # 15 - protein
|
| 66 |
+
'R', # 16 - protein
|
| 67 |
+
'T', # 17 - protein
|
| 68 |
+
'I', # 18 - protein
|
| 69 |
+
'D', # 19 - protein
|
| 70 |
+
'P', # 20 - protein
|
| 71 |
+
'K', # 21 - protein
|
| 72 |
+
'Q', # 22 - protein
|
| 73 |
+
'N', # 23 - protein
|
| 74 |
+
'F', # 24 - protein
|
| 75 |
+
'Y', # 25 - protein
|
| 76 |
+
'M', # 26 - protein
|
| 77 |
+
'H', # 27 - protein
|
| 78 |
+
'W', # 28 - protein
|
| 79 |
+
'C', # 29 - protein
|
| 80 |
+
'X', # 30 - protein unknown
|
| 81 |
+
'B', # 31 - protein
|
| 82 |
+
'U', # 32 - protein
|
| 83 |
+
'Z', # 33 - protein
|
| 84 |
+
'O', # 34 - protein
|
| 85 |
+
'J', # 35 - protein
|
| 86 |
+
'.', # 36 - special
|
| 87 |
+
'-', # 37 - special
|
| 88 |
+
'*' # 38 - special
|
| 89 |
+
]
|
| 90 |
+
|
| 91 |
+
def __init__(
|
| 92 |
+
self,
|
| 93 |
+
vocab_type: str = "gene_prot",
|
| 94 |
+
prepend_bos: bool = True,
|
| 95 |
+
append_eos: bool = True,
|
| 96 |
+
unk_token="[UNK]",
|
| 97 |
+
pad_token="[PAD]",
|
| 98 |
+
cls_token="[CLS]",
|
| 99 |
+
sep_token="[SEP]",
|
| 100 |
+
mask_token="[MASK]",
|
| 101 |
+
**kwargs
|
| 102 |
+
):
|
| 103 |
+
# Set vocabulary based on type
|
| 104 |
+
if vocab_type.lower() == "prot":
|
| 105 |
+
prepend_toks = self.prot_prepend_toks
|
| 106 |
+
append_toks = self.prot_append_toks
|
| 107 |
+
standard_toks = self.prot_standard_toks
|
| 108 |
+
elif vocab_type.lower() == "gene":
|
| 109 |
+
prepend_toks = self.gene_prepend_toks
|
| 110 |
+
append_toks = self.gene_append_toks
|
| 111 |
+
standard_toks = self.gene_standard_toks
|
| 112 |
+
elif vocab_type.lower() in ["gene_prot", "prot_gene"]:
|
| 113 |
+
prepend_toks = self.gene_prot_prepend_toks
|
| 114 |
+
append_toks = self.gene_prot_append_toks
|
| 115 |
+
standard_toks = self.gene_prot_standard_toks
|
| 116 |
+
else:
|
| 117 |
+
raise ValueError(f"Not support tokenizer vocab_type: {vocab_type}")
|
| 118 |
+
|
| 119 |
+
# Build vocabulary
|
| 120 |
+
self.all_toks = list(prepend_toks) + list(append_toks) + list(standard_toks)
|
| 121 |
+
self.tok_to_idx = {tok: i for i, tok in enumerate(self.all_toks)}
|
| 122 |
+
self.idx_to_tok = {i: tok for i, tok in enumerate(self.all_toks)}
|
| 123 |
+
|
| 124 |
+
# Store configuration
|
| 125 |
+
self.vocab_type = vocab_type
|
| 126 |
+
self.prepend_bos = prepend_bos
|
| 127 |
+
self.append_eos = append_eos
|
| 128 |
+
self.unique_no_split_tokens = self.all_toks.copy()
|
| 129 |
+
|
| 130 |
+
# Special token indices
|
| 131 |
+
self.unk_idx = self.tok_to_idx.get("[UNK]", 1)
|
| 132 |
+
self.padding_idx = self.tok_to_idx.get("[PAD]", 0)
|
| 133 |
+
self.cls_idx = self.tok_to_idx.get("[CLS]", 2)
|
| 134 |
+
self.mask_idx = self.tok_to_idx.get("[MASK]", 4)
|
| 135 |
+
self.eos_idx = self.tok_to_idx.get("[SEP]", 3)
|
| 136 |
+
|
| 137 |
+
super().__init__(
|
| 138 |
+
unk_token=unk_token,
|
| 139 |
+
pad_token=pad_token,
|
| 140 |
+
cls_token=cls_token,
|
| 141 |
+
sep_token=sep_token,
|
| 142 |
+
mask_token=mask_token,
|
| 143 |
+
**kwargs
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
def get_vocab(self) -> Dict[str, int]:
|
| 147 |
+
return self.tok_to_idx.copy()
|
| 148 |
+
|
| 149 |
+
@property
|
| 150 |
+
def vocab_size(self) -> int:
|
| 151 |
+
return len(self.all_toks)
|
| 152 |
+
|
| 153 |
+
def get_idx(self, tok):
|
| 154 |
+
return self.tok_to_idx.get(tok, self.unk_idx)
|
| 155 |
+
|
| 156 |
+
def get_tok(self, idx):
|
| 157 |
+
return self.idx_to_tok.get(idx, "[UNK]")
|
| 158 |
+
|
| 159 |
+
def _tokenize_char_level(self, text: str) -> List[str]:
|
| 160 |
+
"""Simple character-level tokenization (fallback)"""
|
| 161 |
+
return list(text)
|
| 162 |
+
|
| 163 |
+
def _tokenize(self, text: str) -> List[str]:
|
| 164 |
+
"""
|
| 165 |
+
Tokenize text using the same logic as the old Alphabet.tokenize() method
|
| 166 |
+
"""
|
| 167 |
+
text = text.strip()
|
| 168 |
+
if not text:
|
| 169 |
+
return []
|
| 170 |
+
|
| 171 |
+
return list(text)
|
| 172 |
+
|
| 173 |
+
def _convert_token_to_id(self, token: str) -> int:
|
| 174 |
+
return self.get_idx(token)
|
| 175 |
+
|
| 176 |
+
def _convert_id_to_token(self, index: int) -> str:
|
| 177 |
+
return self.get_tok(index)
|
| 178 |
+
|
| 179 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
| 180 |
+
return "".join(tokens)
|
| 181 |
+
|
| 182 |
+
def _convert_text_to_ids(self, text: str, seq_type: str) -> List[int]:
|
| 183 |
+
"""Internal helper to convert text to IDs without special tokens."""
|
| 184 |
+
if seq_type == "gene":
|
| 185 |
+
text = gene_seq_replace(text)
|
| 186 |
+
tokens = self._tokenize(text)
|
| 187 |
+
return [self._convert_token_to_id(token) for token in tokens]
|
| 188 |
+
|
| 189 |
+
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]:
|
| 190 |
+
"""
|
| 191 |
+
Build model inputs from a sequence by adding special tokens.
|
| 192 |
+
This mimics the old model's prepend_bos and append_eos behavior.
|
| 193 |
+
"""
|
| 194 |
+
result = token_ids_0.copy()
|
| 195 |
+
|
| 196 |
+
if self.prepend_bos:
|
| 197 |
+
result = [self.cls_idx] + result
|
| 198 |
+
if self.append_eos:
|
| 199 |
+
result = result + [self.eos_idx]
|
| 200 |
+
|
| 201 |
+
return result
|
| 202 |
+
|
| 203 |
+
def get_special_tokens_mask(
|
| 204 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 205 |
+
) -> List[int]:
|
| 206 |
+
"""
|
| 207 |
+
Retrieve sequence ids from a token list.
|
| 208 |
+
"""
|
| 209 |
+
if already_has_special_tokens:
|
| 210 |
+
return super().get_special_tokens_mask(
|
| 211 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
result = [0] * len(token_ids_0)
|
| 215 |
+
if self.prepend_bos:
|
| 216 |
+
result = [1] + result
|
| 217 |
+
if self.append_eos:
|
| 218 |
+
result = result + [1]
|
| 219 |
+
return result
|
| 220 |
+
|
| 221 |
+
def encode(
|
| 222 |
+
self,
|
| 223 |
+
text: str,
|
| 224 |
+
seq_type: str = "gene",
|
| 225 |
+
add_special_tokens: bool = True,
|
| 226 |
+
padding: Union[bool, str] = False, # 虽然 encode 通常不处理 padding,但保持 API 兼容性
|
| 227 |
+
truncation: bool = False, # <--- 关键参数
|
| 228 |
+
max_length: Optional[int] = None, # <--- 关键参数
|
| 229 |
+
**kwargs
|
| 230 |
+
) -> List[int]:
|
| 231 |
+
|
| 232 |
+
# 1. 基础转换
|
| 233 |
+
token_ids = self._convert_text_to_ids(text, seq_type)
|
| 234 |
+
|
| 235 |
+
# 2. 添加特殊 token
|
| 236 |
+
if add_special_tokens:
|
| 237 |
+
token_ids = self.build_inputs_with_special_tokens(token_ids)
|
| 238 |
+
|
| 239 |
+
# 3. 执行截断 (修复点:之前这里缺失逻辑)
|
| 240 |
+
if truncation and max_length is not None and len(token_ids) > max_length:
|
| 241 |
+
token_ids = token_ids[:max_length]
|
| 242 |
+
# 如果启用了 append_eos,强行把截断后的最后一位改回 SEP
|
| 243 |
+
if add_special_tokens and self.append_eos:
|
| 244 |
+
token_ids[-1] = self.eos_idx
|
| 245 |
+
|
| 246 |
+
return token_ids
|
| 247 |
+
|
| 248 |
+
def __call__(
|
| 249 |
+
self,
|
| 250 |
+
text: Union[str, List[str]],
|
| 251 |
+
text_pair: Optional[Union[str, List[str]]] = None,
|
| 252 |
+
seq_type: str = "gene",
|
| 253 |
+
add_special_tokens: bool = True,
|
| 254 |
+
padding: Union[bool, str] = False,
|
| 255 |
+
max_length: Optional[int] = None,
|
| 256 |
+
return_attention_mask: bool = True,
|
| 257 |
+
return_token_type_ids: bool = True,
|
| 258 |
+
return_tensors: Optional[str] = None,
|
| 259 |
+
truncation: bool = False,
|
| 260 |
+
**kwargs
|
| 261 |
+
) -> Union[Dict[str, Any], List[Dict[str, Any]]]:
|
| 262 |
+
"""
|
| 263 |
+
Main callable method for tokenization - HuggingFace standard interface
|
| 264 |
+
"""
|
| 265 |
+
if isinstance(text, list):
|
| 266 |
+
# Handle batch processing
|
| 267 |
+
return self.batch_encode_plus(
|
| 268 |
+
text,
|
| 269 |
+
text_pair=text_pair,
|
| 270 |
+
seq_type=seq_type,
|
| 271 |
+
add_special_tokens=add_special_tokens,
|
| 272 |
+
padding=padding,
|
| 273 |
+
max_length=max_length,
|
| 274 |
+
return_attention_mask=return_attention_mask,
|
| 275 |
+
return_token_type_ids=return_token_type_ids,
|
| 276 |
+
return_tensors=return_tensors,
|
| 277 |
+
truncation=truncation,
|
| 278 |
+
**kwargs
|
| 279 |
+
)
|
| 280 |
+
else:
|
| 281 |
+
# Handle single text
|
| 282 |
+
return self.encode_plus(
|
| 283 |
+
text,
|
| 284 |
+
text_pair=text_pair,
|
| 285 |
+
seq_type=seq_type,
|
| 286 |
+
add_special_tokens=add_special_tokens,
|
| 287 |
+
padding=padding,
|
| 288 |
+
max_length=max_length,
|
| 289 |
+
return_attention_mask=return_attention_mask,
|
| 290 |
+
return_token_type_ids=return_token_type_ids,
|
| 291 |
+
return_tensors=return_tensors,
|
| 292 |
+
truncation=truncation,
|
| 293 |
+
**kwargs
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
def batch_encode_plus(self, *args, **kwargs):
|
| 297 |
+
# 显式调用父类,或者保留你原有的实现,只要确保内部调用的是修复后的 encode_plus 即可
|
| 298 |
+
return super().batch_encode_plus(*args, **kwargs)
|
| 299 |
+
|
| 300 |
+
def encode_plus(
|
| 301 |
+
self,
|
| 302 |
+
text: str,
|
| 303 |
+
text_pair: Optional[str] = None,
|
| 304 |
+
seq_type: str = "gene",
|
| 305 |
+
add_special_tokens: bool = True,
|
| 306 |
+
padding: Union[bool, str] = False,
|
| 307 |
+
max_length: Optional[int] = None,
|
| 308 |
+
return_attention_mask: bool = True,
|
| 309 |
+
return_token_type_ids: bool = True,
|
| 310 |
+
return_tensors: Optional[str] = None,
|
| 311 |
+
truncation: bool = False,
|
| 312 |
+
**kwargs
|
| 313 |
+
) -> Dict[str, Any]:
|
| 314 |
+
|
| 315 |
+
# 调用修复后的 encode,它现在会正确处理截断
|
| 316 |
+
token_ids = self.encode(
|
| 317 |
+
text,
|
| 318 |
+
seq_type=seq_type,
|
| 319 |
+
add_special_tokens=add_special_tokens,
|
| 320 |
+
truncation=truncation,
|
| 321 |
+
max_length=max_length
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
# 处理 Padding
|
| 325 |
+
attention_mask = [1] * len(token_ids)
|
| 326 |
+
if padding == "max_length" and max_length is not None:
|
| 327 |
+
if len(token_ids) < max_length:
|
| 328 |
+
pad_length = max_length - len(token_ids)
|
| 329 |
+
token_ids.extend([self.padding_idx] * pad_length)
|
| 330 |
+
attention_mask.extend([0] * pad_length)
|
| 331 |
+
# 注意:padding=True (dynamic padding) 通常由 batch_encode_plus 处理,这里单条通常不处理
|
| 332 |
+
|
| 333 |
+
result = {"input_ids": token_ids}
|
| 334 |
+
|
| 335 |
+
if return_attention_mask:
|
| 336 |
+
result["attention_mask"] = attention_mask
|
| 337 |
+
|
| 338 |
+
if return_token_type_ids:
|
| 339 |
+
# 0 for gene, 1 for protein
|
| 340 |
+
type_value = 0 if seq_type == "gene" else 1
|
| 341 |
+
result["token_type_ids"] = [type_value] * len(token_ids)
|
| 342 |
+
|
| 343 |
+
if return_tensors == "pt":
|
| 344 |
+
import torch
|
| 345 |
+
for key, value in result.items():
|
| 346 |
+
result[key] = torch.tensor(value, dtype=torch.long).unsqueeze(0)
|
| 347 |
+
|
| 348 |
+
return result
|
| 349 |
+
|
| 350 |
+
def encode_old_model_style(
|
| 351 |
+
self,
|
| 352 |
+
text: str,
|
| 353 |
+
seq_type: str = "gene",
|
| 354 |
+
max_length: int = None
|
| 355 |
+
) -> List[int]:
|
| 356 |
+
"""
|
| 357 |
+
Encode using the EXACT same process as the old model's encoder function.
|
| 358 |
+
This replicates the logic from src/llm/lucaone_virus/get_embedding.py:encoder()
|
| 359 |
+
"""
|
| 360 |
+
# Preprocess gene sequences (done in get_embedding function BEFORE calling encoder)
|
| 361 |
+
if seq_type == "gene":
|
| 362 |
+
text = gene_seq_replace(text)
|
| 363 |
+
|
| 364 |
+
# Call tokenizer.encode (which does NOT include BOS/EOS in old model)
|
| 365 |
+
seq_encoded = self.encode(text, seq_type=seq_type, add_special_tokens=False)
|
| 366 |
+
|
| 367 |
+
# Apply max_length truncation if specified
|
| 368 |
+
if max_length and len(seq_encoded) > max_length:
|
| 369 |
+
seq_encoded = seq_encoded[:max_length]
|
| 370 |
+
|
| 371 |
+
# Calculate processed_seq_len (as done in old model)
|
| 372 |
+
processed_seq_len = len(seq_encoded) + int(self.prepend_bos) + int(self.append_eos)
|
| 373 |
+
|
| 374 |
+
# Create input_ids tensor (as done in old model encoder function)
|
| 375 |
+
input_ids = [self.padding_idx] * processed_seq_len
|
| 376 |
+
|
| 377 |
+
# Add BOS token if enabled
|
| 378 |
+
if self.prepend_bos:
|
| 379 |
+
input_ids[0] = self.cls_idx
|
| 380 |
+
|
| 381 |
+
# Place the encoded sequence
|
| 382 |
+
start_idx = int(self.prepend_bos)
|
| 383 |
+
for i, token_id in enumerate(seq_encoded):
|
| 384 |
+
input_ids[start_idx + i] = token_id
|
| 385 |
+
|
| 386 |
+
# Add EOS token if enabled
|
| 387 |
+
if self.append_eos:
|
| 388 |
+
input_ids[len(seq_encoded) + int(self.prepend_bos)] = self.eos_idx
|
| 389 |
+
|
| 390 |
+
return input_ids
|
| 391 |
+
|
| 392 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 393 |
+
"""
|
| 394 |
+
Save the tokenizer vocabulary to a JSON file.
|
| 395 |
+
Required by HuggingFace tokenizer interface.
|
| 396 |
+
"""
|
| 397 |
+
if filename_prefix is None:
|
| 398 |
+
filename_prefix = ""
|
| 399 |
+
else:
|
| 400 |
+
filename_prefix = filename_prefix + "-"
|
| 401 |
+
|
| 402 |
+
vocab_file = os.path.join(save_directory, f"{filename_prefix}vocab.json")
|
| 403 |
+
vocab_dict = self.get_vocab()
|
| 404 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
| 405 |
+
json.dump(vocab_dict, f, ensure_ascii=False, indent=2)
|
| 406 |
+
|
| 407 |
+
return (vocab_file,)
|
| 408 |
+
|
| 409 |
+
@classmethod
|
| 410 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
|
| 411 |
+
"""
|
| 412 |
+
Load tokenizer from pretrained model path (standard HuggingFace interface)
|
| 413 |
+
"""
|
| 414 |
+
vocab_file = os.path.join(pretrained_model_name_or_path, "vocab.json")
|
| 415 |
+
if os.path.exists(vocab_file):
|
| 416 |
+
print("Load from saved vocabulary (not implemented yet, use default)")
|
| 417 |
+
return cls(vocab_type="gene_prot", **kwargs)
|
| 418 |
+
else:
|
| 419 |
+
return cls(vocab_type="gene_prot", **kwargs)
|
| 420 |
+
|
| 421 |
+
class LucaGPLMTokenizerFast(PreTrainedTokenizerFast):
|
| 422 |
+
"""
|
| 423 |
+
Fast tokenizer version - currently just delegates to slow tokenizer
|
| 424 |
+
"""
|
| 425 |
+
slow_tokenizer_class = LucaGPLMTokenizer
|
| 426 |
+
|
| 427 |
+
def __init__(self, **kwargs):
|
| 428 |
+
# For now, this is just a placeholder
|
| 429 |
+
# In a full implementation, you would use the tokenizers library
|
| 430 |
+
super().__init__(**kwargs)
|
| 431 |
+
|
| 432 |
+
__all__ = ["LucaGPLMTokenizer", "LucaGPLMTokenizerFast", "gene_seq_replace"]
|
tokenizer_config.json
CHANGED
|
@@ -41,12 +41,18 @@
|
|
| 41 |
"special": true
|
| 42 |
}
|
| 43 |
},
|
| 44 |
-
"clean_up_tokenization_spaces":
|
| 45 |
"cls_token": "[CLS]",
|
| 46 |
"mask_token": "[MASK]",
|
| 47 |
"model_max_length": 1000000000000000019884624838656,
|
| 48 |
"pad_token": "[PAD]",
|
| 49 |
"sep_token": "[SEP]",
|
| 50 |
"tokenizer_class": "LucaGPLMTokenizer",
|
| 51 |
-
"unk_token": "[UNK]"
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
"special": true
|
| 42 |
}
|
| 43 |
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
"cls_token": "[CLS]",
|
| 46 |
"mask_token": "[MASK]",
|
| 47 |
"model_max_length": 1000000000000000019884624838656,
|
| 48 |
"pad_token": "[PAD]",
|
| 49 |
"sep_token": "[SEP]",
|
| 50 |
"tokenizer_class": "LucaGPLMTokenizer",
|
| 51 |
+
"unk_token": "[UNK]",
|
| 52 |
+
"auto_map": {
|
| 53 |
+
"AutoTokenizer": [
|
| 54 |
+
"tokenization_lucaone.LucaGPLMTokenizer",
|
| 55 |
+
null
|
| 56 |
+
]
|
| 57 |
+
}
|
| 58 |
+
}
|