Update README.md
Browse files
README.md
CHANGED
|
@@ -1,21 +1,147 @@
|
|
| 1 |
---
|
| 2 |
-
base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
|
| 3 |
tags:
|
| 4 |
-
-
|
| 5 |
-
- transformers
|
| 6 |
-
- unsloth
|
| 7 |
- llama
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
language:
|
| 10 |
- en
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
#
|
| 14 |
|
| 15 |
-
-
|
| 16 |
-
-
|
| 17 |
-
-
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
tags:
|
| 3 |
+
- gguf
|
|
|
|
|
|
|
| 4 |
- llama
|
| 5 |
+
- llama-3.2
|
| 6 |
+
- text-generation
|
| 7 |
+
- conversational
|
| 8 |
+
license: llama3.2
|
| 9 |
+
datasets:
|
| 10 |
+
- Jackrong/ShareGPT-Qwen3-235B-A22B-Instuct-2507
|
| 11 |
+
- ytz20/LMSYS-Chat-GPT-5-Chat-Response
|
| 12 |
language:
|
| 13 |
- en
|
| 14 |
+
- zh
|
| 15 |
+
base_model:
|
| 16 |
+
- unsloth/Llama-3.2-3B-Instruct
|
| 17 |
---
|
| 18 |
|
| 19 |
+
# GPT-5-Distill-llama3.2-3B-Instruct
|
| 20 |
|
| 21 |
+

|
| 22 |
+

|
| 23 |
+

|
| 24 |
|
| 25 |
+
**Model Type**: Instruction-tuned Edge LLM (Llama 3.2 Architecture)
|
| 26 |
+
- **Base Model**: `unsloth/Llama-3.2-3B-Instruct`
|
| 27 |
+
- **Parameters**: ~3.2B (Optimized for Edge/Consumer GPU)
|
| 28 |
+
- **Training Method**:
|
| 29 |
+
- **SFT (Supervised Fine-Tuning)** using Unsloth & TRL
|
| 30 |
+
- **Knowledge Distillation**: Trained on GPT-5 responses to mimic superior reasoning and tone
|
| 31 |
+
- **LoRA Config**: r=32, alpha=32, targeting all linear projections
|
| 32 |
+
- **Max Context Length**: **32K tokens** (`max_seq_length = 32768`)
|
| 33 |
+
- **Quantization**: Native GGUF support (Q4_K_M, Q8_0, FP16) provided
|
| 34 |
|
| 35 |
+
This model represents a high-efficiency distillation attempt, combining the lightweight, edge-ready architecture of **Llama-3.2-3B** with the high-quality conversational patterns of **GPT-5**. By filtering for "normal" (flawless) responses from the LMSYS dataset, this model aims to deliver flagship-level instruction following in a 3B parameter package.
|
| 36 |
+
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
## 2. Intended Use Cases
|
| 40 |
+
|
| 41 |
+
### ✅ Recommended:
|
| 42 |
+
- **On-Device Chat**: Perfect for laptops, phones, and low-VRAM GPUs due to small size.
|
| 43 |
+
- **Reasoning & Explanations**: Distilled GPT-5 logic helps in providing clearer answers.
|
| 44 |
+
- **Summarization & Rewriting**: Inherits strong English/Chinese capabilities from the dataset mix.
|
| 45 |
+
- **RAG Applications**: 32K context window allows for processing moderate-sized documents.
|
| 46 |
+
|
| 47 |
+
### ⚠️ Not Suitable For:
|
| 48 |
+
- **Math/Complex Coding**: While capable, 3B models have limitations compared to 70B+ models in complex logic.
|
| 49 |
+
- **High-Stakes Medical/Legal Advice**: Outputs should always be verified.
|
| 50 |
+
- **Hallucination-Free Tasks**: Small models may still hallucinate facts.
|
| 51 |
+
|
| 52 |
+
---
|
| 53 |
+
|
| 54 |
+
## 3. Training Data & Methodology
|
| 55 |
+
|
| 56 |
+
The model was trained on a curated mix of **~104,000 high-quality samples**:
|
| 57 |
+
|
| 58 |
+
### (1) ds1: ShareGPT-Qwen3 Instruction Mix (~3,900 samples)
|
| 59 |
+
- **Source**: `Jackrong/ShareGPT-Qwen3-235B-A22B-Instuct-2507`
|
| 60 |
+
- **Role**: Provides diverse, multi-turn instruction following capabilities, enhancing the model's ability to handle complex prompts (English & Chinese mixed).
|
| 61 |
+
|
| 62 |
+
### (2) ds2: LMSYS GPT-5 Teacher Responses (~100,000 samples)
|
| 63 |
+
- **Source**: `ytz20/LMSYS-Chat-GPT-5-Chat-Response`
|
| 64 |
+
- **Filtering Logic**:
|
| 65 |
+
- Applied rigorous filtering: `flaw == "normal"` (Removed hallucinations, refusals, and bad formatting).
|
| 66 |
+
- Only clean, high-quality "Teacher" responses were used for distillation.
|
| 67 |
+
- **Role**: Imparts the "GPT-5" conversational style, politeness, and reasoning structure to the smaller Llama model.
|
| 68 |
+
|
| 69 |
+
### Training Configuration:
|
| 70 |
+
- **Framework**: Unsloth + Hugging Face TRL
|
| 71 |
+
- **Loss Masking**: `train_on_responses_only` was enabled (Model learns to generate answers, not questions).
|
| 72 |
+
- **Optimizer**: AdamW 8-bit for efficiency.
|
| 73 |
+
- **Precision**: Trained in 4-bit, exported to 16-bit and GGUF.
|
| 74 |
+
|
| 75 |
+
---
|
| 76 |
+
|
| 77 |
+
## 4. Prompt Format (Llama 3.2 Standard)
|
| 78 |
+
|
| 79 |
+
This model uses the standard **Llama 3 / 3.2** prompt template.
|
| 80 |
+
|
| 81 |
+
```text
|
| 82 |
+
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 83 |
+
|
| 84 |
+
You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>
|
| 85 |
+
|
| 86 |
+
{Your Prompt Here}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
| 87 |
+
````
|
| 88 |
+
|
| 89 |
+
**Python Inference Example:**
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 93 |
+
import torch
|
| 94 |
+
|
| 95 |
+
model_id = "Jackrong/GPT-5-Distill-llama3.2-3B-Instruct"
|
| 96 |
+
|
| 97 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 98 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 99 |
+
model_id,
|
| 100 |
+
torch_dtype=torch.bfloat16,
|
| 101 |
+
device_map="auto",
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
messages = [
|
| 105 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 106 |
+
{"role": "user", "content": "Explain quantum mechanics to a 5-year-old."},
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
input_ids = tokenizer.apply_chat_template(
|
| 110 |
+
messages,
|
| 111 |
+
add_generation_prompt=True,
|
| 112 |
+
return_tensors="pt"
|
| 113 |
+
).to(model.device)
|
| 114 |
+
|
| 115 |
+
outputs = model.generate(
|
| 116 |
+
input_ids,
|
| 117 |
+
max_new_tokens=512,
|
| 118 |
+
temperature=0.7,
|
| 119 |
+
do_sample=True
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
print(tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True))
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
-----
|
| 126 |
+
|
| 127 |
+
## 5\. Key Features Summary
|
| 128 |
+
|
| 129 |
+
| Feature | Description |
|
| 130 |
+
|--------|-------------|
|
| 131 |
+
| **Super Lightweight** | 3B Parameters. Runs on almost any modern consumer hardware. |
|
| 132 |
+
| **GPT-5 Distilled** | Learned from 100k+ clean GPT-5 outputs for superior tone. |
|
| 133 |
+
| **Long Context** | Supports up to **32k context**, great for long conversations. |
|
| 134 |
+
| **GGUF Ready** | Available in `q4_k_m` (very fast) and `q8_0` quantizations. |
|
| 135 |
+
|
| 136 |
+
-----
|
| 137 |
+
|
| 138 |
+
## 6\. Acknowledgements
|
| 139 |
+
|
| 140 |
+
- **Unsloth**: For the 2x faster training and 4-bit loading capabilities.
|
| 141 |
+
- **LMSYS Org**: For providing the GPT-5 response dataset.
|
| 142 |
+
- **Meta AI**: For the robust Llama-3.2 base model.
|
| 143 |
+
|
| 144 |
+
This project is an open research effort to bring "Big Model Intelligence" to "Small Model Footprints."
|
| 145 |
+
|
| 146 |
+
```
|
| 147 |
+
```
|