HemingZhang commited on
Commit
cfba6ad
·
verified ·
1 Parent(s): abf8135

Upload checkpoint for GALAX

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128009,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 8192,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 8,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": null,
23
+ "rope_theta": 500000.0,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.51.3",
27
+ "use_cache": true,
28
+ "vocab_size": 128256
29
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128009
7
+ ],
8
+ "max_length": 4096,
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.51.3"
12
+ }
global_step333/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:692047bb600324db5b2dc1046285fb340db272c1559d1c2fd73dc1569ee2e515
3
+ size 48181574026
global_step333/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6466409a6a1266f817bce036dd755aa7a1f1eac22475301c77ec875fe09d4b2
3
+ size 149349
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step333
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fe90de91a8f5da4dd18812107ee51a3feecb1067e34f0349277c6ee2f5a6785
3
+ size 4976698672
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fc16fa9488fe7e6e23715ea0b4cb2f49cca02a38407466613dc2bd6844fa741
3
+ size 4999802720
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dcb9a7d9145e16fda325f3d342a012ba7cd09ae9e60e570ede299bd45d7090a
3
+ size 4915916176
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1b936992cf1cdfb5a0a392743207a0c8f7345f259c40034b3374817a3eb8121
3
+ size 1168138808
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16060522496
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.norm.weight": "model-00004-of-00004.safetensors"
297
+ }
298
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00966419e724d11705023e7781a58b7701f9de92d041e32217c7a585598d5410
3
+ size 14512
special_tokens_map.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|eot_id|>"
17
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cada38f059eb4196225943ee3249585fa12f1363434a48ab5b4fff2ecd4735fe
3
+ size 17210238
tokenizer_config.json ADDED
@@ -0,0 +1,2071 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|reserved_special_token_2|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_3|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|reserved_special_token_4|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|reserved_special_token_5|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_6|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_7|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_8|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_9|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_10|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_11|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_12|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_13|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_14|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_15|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_16|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_17|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_18|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_19|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_20|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_21|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_22|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_23|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_24|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_25|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_26|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_27|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_28|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_29|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_30|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_31|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_32|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_33|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_34|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_35|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_36|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_37|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_38|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_39|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_40|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_41|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_42|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_43|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_44|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_45|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_46|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_47|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_48|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_49|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_50|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_51|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_52|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_53|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_54|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_55|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_56|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_57|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_58|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_59|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_60|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_61|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_62|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_63|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_64|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_65|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_66|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_67|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_68|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_69|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_70|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_71|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_72|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_73|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_74|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_75|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_76|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_77|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_78|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_79|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_80|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_81|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_82|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_83|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_84|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_85|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_86|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_87|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_88|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_89|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_90|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_91|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_92|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_93|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_94|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_95|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_96|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_97|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_98|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_99|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_100|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_101|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_102|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_103|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_104|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_105|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_106|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_107|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_108|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_109|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_110|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_111|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_112|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_113|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_114|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_115|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_116|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_117|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_118|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_119|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_120|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_121|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_122|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_123|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_124|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_125|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_126|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_127|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_128|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_129|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_130|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_131|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_132|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_133|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_134|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_135|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_136|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_137|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_138|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_139|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_140|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_141|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_142|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_143|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_144|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_145|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_146|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_147|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_148|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_149|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_150|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_151|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_152|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_153|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_154|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_155|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_156|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_157|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_158|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_159|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_160|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_161|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_162|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_163|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_164|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_165|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_166|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_167|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_168|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_169|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_170|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_171|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_172|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_173|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_174|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_175|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_176|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_177|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_178|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_179|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_180|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_181|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_182|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_183|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_184|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_185|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_186|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_187|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_188|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_189|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_190|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_191|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_192|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_193|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_194|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_195|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_196|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_197|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_198|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_199|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_200|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_201|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_202|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_203|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_204|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_205|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_206|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_207|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_208|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_209|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_210|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_211|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_212|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_213|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_214|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_215|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_216|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_217|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_218|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_219|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_220|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_221|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_222|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_223|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_224|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_225|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_226|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_227|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_228|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_229|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_230|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_231|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_232|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_233|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_234|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_235|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_236|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_237|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_238|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_239|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_240|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_241|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_242|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_243|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_244|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_245|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_246|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_247|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_248|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_249|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_250|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "extra_special_tokens": {},
2057
+ "max_length": 2048,
2058
+ "model_input_names": [
2059
+ "input_ids",
2060
+ "attention_mask"
2061
+ ],
2062
+ "model_max_length": 1000000000000000019884624838656,
2063
+ "pad_to_multiple_of": null,
2064
+ "pad_token": "<|eot_id|>",
2065
+ "pad_token_type_id": 0,
2066
+ "padding_side": "right",
2067
+ "stride": 0,
2068
+ "tokenizer_class": "PreTrainedTokenizer",
2069
+ "truncation_side": "right",
2070
+ "truncation_strategy": "longest_first"
2071
+ }
trainer_state.json ADDED
@@ -0,0 +1,2379 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 4.933333333333334,
6
+ "eval_steps": 150,
7
+ "global_step": 335,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.014814814814814815,
14
+ "grad_norm": 24.245065689086914,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.5986,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.02962962962962963,
21
+ "grad_norm": 24.59937286376953,
22
+ "learning_rate": 1.965616322328226e-06,
23
+ "loss": 1.5387,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.044444444444444446,
28
+ "grad_norm": 22.017257690429688,
29
+ "learning_rate": 3.1154281616956676e-06,
30
+ "loss": 1.4677,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.05925925925925926,
35
+ "grad_norm": 19.979198455810547,
36
+ "learning_rate": 3.931232644656452e-06,
37
+ "loss": 1.3971,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.07407407407407407,
42
+ "grad_norm": 10.355873107910156,
43
+ "learning_rate": 4.5640197625830816e-06,
44
+ "loss": 1.1965,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.08888888888888889,
49
+ "grad_norm": 7.20529842376709,
50
+ "learning_rate": 5.081044484023894e-06,
51
+ "loss": 1.0327,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.1037037037037037,
56
+ "grad_norm": 6.543303489685059,
57
+ "learning_rate": 5.518182657364912e-06,
58
+ "loss": 1.0091,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.11851851851851852,
63
+ "grad_norm": 5.638514041900635,
64
+ "learning_rate": 5.896848966984678e-06,
65
+ "loss": 0.8685,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.13333333333333333,
70
+ "grad_norm": 4.796297073364258,
71
+ "learning_rate": 6.230856323391335e-06,
72
+ "loss": 0.816,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.14814814814814814,
77
+ "grad_norm": 6.3762431144714355,
78
+ "learning_rate": 6.5296360849113085e-06,
79
+ "loss": 0.8679,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.16296296296296298,
84
+ "grad_norm": 4.701241493225098,
85
+ "learning_rate": 6.7999152555718276e-06,
86
+ "loss": 0.7973,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.17777777777777778,
91
+ "grad_norm": 4.334161281585693,
92
+ "learning_rate": 7.04666080635212e-06,
93
+ "loss": 0.6289,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.1925925925925926,
98
+ "grad_norm": 2.9507179260253906,
99
+ "learning_rate": 7.273644709769792e-06,
100
+ "loss": 0.7202,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.2074074074074074,
105
+ "grad_norm": 3.3083744049072266,
106
+ "learning_rate": 7.483798979693137e-06,
107
+ "loss": 0.6864,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.2222222222222222,
112
+ "grad_norm": 3.1791484355926514,
113
+ "learning_rate": 7.679447924278749e-06,
114
+ "loss": 0.7458,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.23703703703703705,
119
+ "grad_norm": 2.6846699714660645,
120
+ "learning_rate": 7.862465289312904e-06,
121
+ "loss": 0.6543,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.2518518518518518,
126
+ "grad_norm": 3.1359522342681885,
127
+ "learning_rate": 8.034383677671775e-06,
128
+ "loss": 0.531,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.26666666666666666,
133
+ "grad_norm": 3.0577006340026855,
134
+ "learning_rate": 8.19647264571956e-06,
135
+ "loss": 0.6345,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.2814814814814815,
140
+ "grad_norm": 3.066653251647949,
141
+ "learning_rate": 8.349795656491867e-06,
142
+ "loss": 0.5942,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.2962962962962963,
147
+ "grad_norm": 3.3706552982330322,
148
+ "learning_rate": 8.495252407239533e-06,
149
+ "loss": 0.638,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.3111111111111111,
154
+ "grad_norm": 2.55362606048584,
155
+ "learning_rate": 8.633610819060579e-06,
156
+ "loss": 0.602,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.32592592592592595,
161
+ "grad_norm": 2.864042282104492,
162
+ "learning_rate": 8.765531577900054e-06,
163
+ "loss": 0.6849,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.34074074074074073,
168
+ "grad_norm": 2.357649326324463,
169
+ "learning_rate": 8.891587215888663e-06,
170
+ "loss": 0.5194,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.35555555555555557,
175
+ "grad_norm": 2.659815549850464,
176
+ "learning_rate": 9.012277128680346e-06,
177
+ "loss": 0.4647,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.37037037037037035,
182
+ "grad_norm": 3.5252552032470703,
183
+ "learning_rate": 9.128039525166163e-06,
184
+ "loss": 0.6621,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.3851851851851852,
189
+ "grad_norm": 2.833387613296509,
190
+ "learning_rate": 9.239261032098019e-06,
191
+ "loss": 0.5758,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.4,
196
+ "grad_norm": 2.5673093795776367,
197
+ "learning_rate": 9.346284485087002e-06,
198
+ "loss": 0.4742,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.4148148148148148,
203
+ "grad_norm": 3.8754830360412598,
204
+ "learning_rate": 9.449415302021363e-06,
205
+ "loss": 0.5632,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.42962962962962964,
210
+ "grad_norm": 2.8832461833953857,
211
+ "learning_rate": 9.548926737583076e-06,
212
+ "loss": 0.5039,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.4444444444444444,
217
+ "grad_norm": 2.340471029281616,
218
+ "learning_rate": 9.645064246606975e-06,
219
+ "loss": 0.4832,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.45925925925925926,
224
+ "grad_norm": 3.4840638637542725,
225
+ "learning_rate": 9.738049131714717e-06,
226
+ "loss": 0.6216,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.4740740740740741,
231
+ "grad_norm": 1.927802562713623,
232
+ "learning_rate": 9.828081611641132e-06,
233
+ "loss": 0.4316,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.4888888888888889,
238
+ "grad_norm": 1.9146533012390137,
239
+ "learning_rate": 9.915343417267494e-06,
240
+ "loss": 0.4261,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.5037037037037037,
245
+ "grad_norm": 2.636239767074585,
246
+ "learning_rate": 1e-05,
247
+ "loss": 0.4445,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.5185185185185185,
252
+ "grad_norm": 2.7775421142578125,
253
+ "learning_rate": 1e-05,
254
+ "loss": 0.5895,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.5333333333333333,
259
+ "grad_norm": 3.3831987380981445,
260
+ "learning_rate": 9.966777408637874e-06,
261
+ "loss": 0.5247,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.5481481481481482,
266
+ "grad_norm": 2.883329391479492,
267
+ "learning_rate": 9.933554817275748e-06,
268
+ "loss": 0.4712,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.562962962962963,
273
+ "grad_norm": 2.908726215362549,
274
+ "learning_rate": 9.900332225913623e-06,
275
+ "loss": 0.4991,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.5777777777777777,
280
+ "grad_norm": 2.307657480239868,
281
+ "learning_rate": 9.867109634551495e-06,
282
+ "loss": 0.4174,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.5925925925925926,
287
+ "grad_norm": 2.3641955852508545,
288
+ "learning_rate": 9.83388704318937e-06,
289
+ "loss": 0.5014,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.6074074074074074,
294
+ "grad_norm": 2.850147247314453,
295
+ "learning_rate": 9.800664451827243e-06,
296
+ "loss": 0.5025,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.6222222222222222,
301
+ "grad_norm": 2.9469687938690186,
302
+ "learning_rate": 9.767441860465117e-06,
303
+ "loss": 0.4127,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.6370370370370371,
308
+ "grad_norm": 2.0221896171569824,
309
+ "learning_rate": 9.734219269102992e-06,
310
+ "loss": 0.4793,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.6518518518518519,
315
+ "grad_norm": 2.2807424068450928,
316
+ "learning_rate": 9.700996677740865e-06,
317
+ "loss": 0.4363,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.6666666666666666,
322
+ "grad_norm": 1.9812514781951904,
323
+ "learning_rate": 9.66777408637874e-06,
324
+ "loss": 0.472,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.6814814814814815,
329
+ "grad_norm": 2.3653407096862793,
330
+ "learning_rate": 9.634551495016612e-06,
331
+ "loss": 0.4747,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.6962962962962963,
336
+ "grad_norm": 1.875173807144165,
337
+ "learning_rate": 9.601328903654485e-06,
338
+ "loss": 0.4466,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.7111111111111111,
343
+ "grad_norm": 2.5644772052764893,
344
+ "learning_rate": 9.56810631229236e-06,
345
+ "loss": 0.4908,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.725925925925926,
350
+ "grad_norm": 2.5701663494110107,
351
+ "learning_rate": 9.534883720930234e-06,
352
+ "loss": 0.5709,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.7407407407407407,
357
+ "grad_norm": 3.4693243503570557,
358
+ "learning_rate": 9.501661129568107e-06,
359
+ "loss": 0.4436,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.7555555555555555,
364
+ "grad_norm": 1.7804033756256104,
365
+ "learning_rate": 9.468438538205981e-06,
366
+ "loss": 0.5096,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.7703703703703704,
371
+ "grad_norm": 2.171896457672119,
372
+ "learning_rate": 9.435215946843854e-06,
373
+ "loss": 0.4063,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.7851851851851852,
378
+ "grad_norm": 2.830214500427246,
379
+ "learning_rate": 9.401993355481728e-06,
380
+ "loss": 0.6981,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.8,
385
+ "grad_norm": 3.3130273818969727,
386
+ "learning_rate": 9.368770764119603e-06,
387
+ "loss": 0.5553,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.8148148148148148,
392
+ "grad_norm": 2.5522916316986084,
393
+ "learning_rate": 9.335548172757476e-06,
394
+ "loss": 0.5471,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.8296296296296296,
399
+ "grad_norm": 1.8053007125854492,
400
+ "learning_rate": 9.30232558139535e-06,
401
+ "loss": 0.4449,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.8444444444444444,
406
+ "grad_norm": 2.2297627925872803,
407
+ "learning_rate": 9.269102990033223e-06,
408
+ "loss": 0.4782,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.8592592592592593,
413
+ "grad_norm": 2.388592004776001,
414
+ "learning_rate": 9.235880398671098e-06,
415
+ "loss": 0.4333,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.8740740740740741,
420
+ "grad_norm": 2.2160580158233643,
421
+ "learning_rate": 9.20265780730897e-06,
422
+ "loss": 0.397,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.8888888888888888,
427
+ "grad_norm": 2.1153295040130615,
428
+ "learning_rate": 9.169435215946845e-06,
429
+ "loss": 0.4976,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.9037037037037037,
434
+ "grad_norm": 2.1571428775787354,
435
+ "learning_rate": 9.136212624584718e-06,
436
+ "loss": 0.5009,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.9185185185185185,
441
+ "grad_norm": 1.9368093013763428,
442
+ "learning_rate": 9.102990033222592e-06,
443
+ "loss": 0.4225,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.9333333333333333,
448
+ "grad_norm": 1.793280839920044,
449
+ "learning_rate": 9.069767441860465e-06,
450
+ "loss": 0.4407,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.9481481481481482,
455
+ "grad_norm": 1.7864512205123901,
456
+ "learning_rate": 9.03654485049834e-06,
457
+ "loss": 0.481,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.9629629629629629,
462
+ "grad_norm": 2.982163429260254,
463
+ "learning_rate": 9.003322259136214e-06,
464
+ "loss": 0.5735,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.9777777777777777,
469
+ "grad_norm": 2.1836278438568115,
470
+ "learning_rate": 8.970099667774087e-06,
471
+ "loss": 0.4532,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.9925925925925926,
476
+ "grad_norm": 2.726743221282959,
477
+ "learning_rate": 8.93687707641196e-06,
478
+ "loss": 0.5093,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 1.0,
483
+ "grad_norm": 2.726743221282959,
484
+ "learning_rate": 8.93687707641196e-06,
485
+ "loss": 0.4299,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 1.0148148148148148,
490
+ "grad_norm": 2.7928483486175537,
491
+ "learning_rate": 8.903654485049834e-06,
492
+ "loss": 0.3207,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 1.0296296296296297,
497
+ "grad_norm": 1.4182758331298828,
498
+ "learning_rate": 8.870431893687709e-06,
499
+ "loss": 0.4154,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 1.0444444444444445,
504
+ "grad_norm": 2.5209672451019287,
505
+ "learning_rate": 8.837209302325582e-06,
506
+ "loss": 0.4017,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 1.0592592592592593,
511
+ "grad_norm": 1.528294324874878,
512
+ "learning_rate": 8.803986710963456e-06,
513
+ "loss": 0.3515,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 1.074074074074074,
518
+ "grad_norm": 2.7746169567108154,
519
+ "learning_rate": 8.770764119601329e-06,
520
+ "loss": 0.4338,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 1.0888888888888888,
525
+ "grad_norm": 1.9682352542877197,
526
+ "learning_rate": 8.737541528239203e-06,
527
+ "loss": 0.4154,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 1.1037037037037036,
532
+ "grad_norm": 2.2559337615966797,
533
+ "learning_rate": 8.704318936877078e-06,
534
+ "loss": 0.368,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 1.1185185185185185,
539
+ "grad_norm": 1.3220306634902954,
540
+ "learning_rate": 8.67109634551495e-06,
541
+ "loss": 0.3142,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 1.1333333333333333,
546
+ "grad_norm": 2.455972671508789,
547
+ "learning_rate": 8.637873754152825e-06,
548
+ "loss": 0.4777,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 1.1481481481481481,
553
+ "grad_norm": 2.32432222366333,
554
+ "learning_rate": 8.604651162790698e-06,
555
+ "loss": 0.4585,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 1.162962962962963,
560
+ "grad_norm": 2.2095751762390137,
561
+ "learning_rate": 8.571428571428571e-06,
562
+ "loss": 0.4513,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 1.1777777777777778,
567
+ "grad_norm": 2.29775071144104,
568
+ "learning_rate": 8.538205980066447e-06,
569
+ "loss": 0.3315,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 1.1925925925925926,
574
+ "grad_norm": 2.390573740005493,
575
+ "learning_rate": 8.50498338870432e-06,
576
+ "loss": 0.4328,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 1.2074074074074075,
581
+ "grad_norm": 2.1682214736938477,
582
+ "learning_rate": 8.471760797342193e-06,
583
+ "loss": 0.3708,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 1.2222222222222223,
588
+ "grad_norm": 2.305809736251831,
589
+ "learning_rate": 8.438538205980067e-06,
590
+ "loss": 0.333,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 1.237037037037037,
595
+ "grad_norm": 1.9154317378997803,
596
+ "learning_rate": 8.40531561461794e-06,
597
+ "loss": 0.3514,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 1.2518518518518518,
602
+ "grad_norm": 2.1949751377105713,
603
+ "learning_rate": 8.372093023255815e-06,
604
+ "loss": 0.3423,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 1.2666666666666666,
609
+ "grad_norm": 1.4846103191375732,
610
+ "learning_rate": 8.338870431893689e-06,
611
+ "loss": 0.3935,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 1.2814814814814814,
616
+ "grad_norm": 2.3148951530456543,
617
+ "learning_rate": 8.305647840531562e-06,
618
+ "loss": 0.3683,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 1.2962962962962963,
623
+ "grad_norm": 1.7715332508087158,
624
+ "learning_rate": 8.272425249169436e-06,
625
+ "loss": 0.3415,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 1.3111111111111111,
630
+ "grad_norm": 1.6804319620132446,
631
+ "learning_rate": 8.23920265780731e-06,
632
+ "loss": 0.4075,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 1.325925925925926,
637
+ "grad_norm": 1.976668119430542,
638
+ "learning_rate": 8.205980066445184e-06,
639
+ "loss": 0.295,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 1.3407407407407408,
644
+ "grad_norm": 1.8023229837417603,
645
+ "learning_rate": 8.172757475083057e-06,
646
+ "loss": 0.389,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 1.3555555555555556,
651
+ "grad_norm": 1.7759190797805786,
652
+ "learning_rate": 8.139534883720931e-06,
653
+ "loss": 0.3517,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 1.3703703703703702,
658
+ "grad_norm": 1.3482650518417358,
659
+ "learning_rate": 8.106312292358804e-06,
660
+ "loss": 0.3606,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 1.3851851851851853,
665
+ "grad_norm": 2.5421998500823975,
666
+ "learning_rate": 8.073089700996678e-06,
667
+ "loss": 0.5241,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 1.4,
672
+ "grad_norm": 3.181865692138672,
673
+ "learning_rate": 8.039867109634553e-06,
674
+ "loss": 0.375,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 1.4148148148148147,
679
+ "grad_norm": 1.7613658905029297,
680
+ "learning_rate": 8.006644518272426e-06,
681
+ "loss": 0.4339,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 1.4296296296296296,
686
+ "grad_norm": 1.4631813764572144,
687
+ "learning_rate": 7.9734219269103e-06,
688
+ "loss": 0.3762,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 1.4444444444444444,
693
+ "grad_norm": 1.71363365650177,
694
+ "learning_rate": 7.940199335548173e-06,
695
+ "loss": 0.3224,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 1.4592592592592593,
700
+ "grad_norm": 2.1795740127563477,
701
+ "learning_rate": 7.906976744186048e-06,
702
+ "loss": 0.3816,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 1.474074074074074,
707
+ "grad_norm": 1.5822690725326538,
708
+ "learning_rate": 7.873754152823922e-06,
709
+ "loss": 0.4523,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 1.488888888888889,
714
+ "grad_norm": 1.7851877212524414,
715
+ "learning_rate": 7.840531561461795e-06,
716
+ "loss": 0.3665,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 1.5037037037037035,
721
+ "grad_norm": 1.671633243560791,
722
+ "learning_rate": 7.807308970099668e-06,
723
+ "loss": 0.3217,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 1.5185185185185186,
728
+ "grad_norm": 2.666489601135254,
729
+ "learning_rate": 7.774086378737542e-06,
730
+ "loss": 0.4801,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 1.5333333333333332,
735
+ "grad_norm": 1.3500992059707642,
736
+ "learning_rate": 7.740863787375415e-06,
737
+ "loss": 0.3407,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 1.5481481481481483,
742
+ "grad_norm": 1.4269295930862427,
743
+ "learning_rate": 7.70764119601329e-06,
744
+ "loss": 0.3082,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 1.5629629629629629,
749
+ "grad_norm": 1.4882391691207886,
750
+ "learning_rate": 7.674418604651164e-06,
751
+ "loss": 0.3497,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 1.5777777777777777,
756
+ "grad_norm": 1.4180535078048706,
757
+ "learning_rate": 7.641196013289037e-06,
758
+ "loss": 0.3963,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 1.5925925925925926,
763
+ "grad_norm": 1.4838252067565918,
764
+ "learning_rate": 7.6079734219269106e-06,
765
+ "loss": 0.3956,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 1.6074074074074074,
770
+ "grad_norm": 2.0815930366516113,
771
+ "learning_rate": 7.574750830564784e-06,
772
+ "loss": 0.4667,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 1.6222222222222222,
777
+ "grad_norm": 1.80450439453125,
778
+ "learning_rate": 7.541528239202659e-06,
779
+ "loss": 0.5329,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 1.637037037037037,
784
+ "grad_norm": 2.5666868686676025,
785
+ "learning_rate": 7.508305647840532e-06,
786
+ "loss": 0.5433,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 1.651851851851852,
791
+ "grad_norm": 1.733236312866211,
792
+ "learning_rate": 7.475083056478406e-06,
793
+ "loss": 0.4304,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 1.6666666666666665,
798
+ "grad_norm": 2.059544086456299,
799
+ "learning_rate": 7.44186046511628e-06,
800
+ "loss": 0.3601,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 1.6814814814814816,
805
+ "grad_norm": 1.8904452323913574,
806
+ "learning_rate": 7.408637873754153e-06,
807
+ "loss": 0.385,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 1.6962962962962962,
812
+ "grad_norm": 1.3712379932403564,
813
+ "learning_rate": 7.375415282392027e-06,
814
+ "loss": 0.2972,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 1.7111111111111112,
819
+ "grad_norm": 1.5603693723678589,
820
+ "learning_rate": 7.342192691029902e-06,
821
+ "loss": 0.3953,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 1.7259259259259259,
826
+ "grad_norm": 1.4126758575439453,
827
+ "learning_rate": 7.308970099667775e-06,
828
+ "loss": 0.3582,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 1.7407407407407407,
833
+ "grad_norm": 2.0345335006713867,
834
+ "learning_rate": 7.275747508305648e-06,
835
+ "loss": 0.5015,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 1.7555555555555555,
840
+ "grad_norm": 2.6806693077087402,
841
+ "learning_rate": 7.242524916943522e-06,
842
+ "loss": 0.4006,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 1.7703703703703704,
847
+ "grad_norm": 1.6245332956314087,
848
+ "learning_rate": 7.209302325581395e-06,
849
+ "loss": 0.4188,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 1.7851851851851852,
854
+ "grad_norm": 1.6593953371047974,
855
+ "learning_rate": 7.17607973421927e-06,
856
+ "loss": 0.3694,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 1.8,
861
+ "grad_norm": 1.595201849937439,
862
+ "learning_rate": 7.1428571428571436e-06,
863
+ "loss": 0.2838,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 1.8148148148148149,
868
+ "grad_norm": 1.921108603477478,
869
+ "learning_rate": 7.109634551495017e-06,
870
+ "loss": 0.3044,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 1.8296296296296295,
875
+ "grad_norm": 1.5152816772460938,
876
+ "learning_rate": 7.076411960132891e-06,
877
+ "loss": 0.3705,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 1.8444444444444446,
882
+ "grad_norm": 1.7763299942016602,
883
+ "learning_rate": 7.0431893687707646e-06,
884
+ "loss": 0.3935,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 1.8592592592592592,
889
+ "grad_norm": 1.3404872417449951,
890
+ "learning_rate": 7.009966777408639e-06,
891
+ "loss": 0.3951,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 1.8740740740740742,
896
+ "grad_norm": 1.7480947971343994,
897
+ "learning_rate": 6.976744186046513e-06,
898
+ "loss": 0.3694,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 1.8888888888888888,
903
+ "grad_norm": 1.3903143405914307,
904
+ "learning_rate": 6.9435215946843855e-06,
905
+ "loss": 0.3963,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 1.9037037037037037,
910
+ "grad_norm": 1.579624056816101,
911
+ "learning_rate": 6.910299003322259e-06,
912
+ "loss": 0.4147,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 1.9185185185185185,
917
+ "grad_norm": 1.6633076667785645,
918
+ "learning_rate": 6.877076411960133e-06,
919
+ "loss": 0.415,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 1.9333333333333333,
924
+ "grad_norm": 1.4897836446762085,
925
+ "learning_rate": 6.843853820598007e-06,
926
+ "loss": 0.3438,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 1.9481481481481482,
931
+ "grad_norm": 1.7405959367752075,
932
+ "learning_rate": 6.810631229235881e-06,
933
+ "loss": 0.3973,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 1.9629629629629628,
938
+ "grad_norm": 1.6084774732589722,
939
+ "learning_rate": 6.777408637873755e-06,
940
+ "loss": 0.3904,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 1.9777777777777779,
945
+ "grad_norm": 1.4988147020339966,
946
+ "learning_rate": 6.744186046511628e-06,
947
+ "loss": 0.4101,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 1.9925925925925925,
952
+ "grad_norm": 2.449335813522339,
953
+ "learning_rate": 6.710963455149502e-06,
954
+ "loss": 0.3886,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 2.0,
959
+ "grad_norm": 2.2566375732421875,
960
+ "learning_rate": 6.6777408637873766e-06,
961
+ "loss": 0.3651,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 2.0148148148148146,
966
+ "grad_norm": 1.5977928638458252,
967
+ "learning_rate": 6.64451827242525e-06,
968
+ "loss": 0.3709,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 2.0296296296296297,
973
+ "grad_norm": 2.1500344276428223,
974
+ "learning_rate": 6.611295681063124e-06,
975
+ "loss": 0.4124,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 2.0444444444444443,
980
+ "grad_norm": 1.3736720085144043,
981
+ "learning_rate": 6.578073089700997e-06,
982
+ "loss": 0.3334,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 2.0592592592592593,
987
+ "grad_norm": 1.6602332592010498,
988
+ "learning_rate": 6.54485049833887e-06,
989
+ "loss": 0.3443,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 2.074074074074074,
994
+ "grad_norm": 1.5972793102264404,
995
+ "learning_rate": 6.511627906976745e-06,
996
+ "loss": 0.3969,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 2.088888888888889,
1001
+ "grad_norm": 1.5588147640228271,
1002
+ "learning_rate": 6.4784053156146185e-06,
1003
+ "loss": 0.2632,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 2.1037037037037036,
1008
+ "grad_norm": 1.4944829940795898,
1009
+ "learning_rate": 6.445182724252492e-06,
1010
+ "loss": 0.3403,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 2.1185185185185187,
1015
+ "grad_norm": 1.799228310585022,
1016
+ "learning_rate": 6.411960132890366e-06,
1017
+ "loss": 0.3669,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 2.1333333333333333,
1022
+ "grad_norm": 1.5002415180206299,
1023
+ "learning_rate": 6.3787375415282395e-06,
1024
+ "loss": 0.3037,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 2.148148148148148,
1029
+ "grad_norm": 1.5463218688964844,
1030
+ "learning_rate": 6.345514950166114e-06,
1031
+ "loss": 0.2999,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 2.162962962962963,
1036
+ "grad_norm": 1.8339827060699463,
1037
+ "learning_rate": 6.312292358803988e-06,
1038
+ "loss": 0.3781,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 2.1777777777777776,
1043
+ "grad_norm": 1.9693403244018555,
1044
+ "learning_rate": 6.279069767441861e-06,
1045
+ "loss": 0.3527,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 2.1925925925925926,
1050
+ "grad_norm": 1.3716813325881958,
1051
+ "learning_rate": 6.245847176079734e-06,
1052
+ "loss": 0.3193,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 2.2074074074074073,
1057
+ "grad_norm": 1.2879470586776733,
1058
+ "learning_rate": 6.212624584717608e-06,
1059
+ "loss": 0.3079,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 2.2222222222222223,
1064
+ "grad_norm": 1.3284484148025513,
1065
+ "learning_rate": 6.179401993355482e-06,
1066
+ "loss": 0.3552,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 2.237037037037037,
1071
+ "grad_norm": 1.1561126708984375,
1072
+ "learning_rate": 6.146179401993356e-06,
1073
+ "loss": 0.2879,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 2.251851851851852,
1078
+ "grad_norm": 1.2936991453170776,
1079
+ "learning_rate": 6.11295681063123e-06,
1080
+ "loss": 0.2926,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 2.2666666666666666,
1085
+ "grad_norm": 1.5603609085083008,
1086
+ "learning_rate": 6.079734219269103e-06,
1087
+ "loss": 0.3591,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 2.2814814814814817,
1092
+ "grad_norm": 1.408933162689209,
1093
+ "learning_rate": 6.046511627906977e-06,
1094
+ "loss": 0.3313,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 2.2962962962962963,
1099
+ "grad_norm": 1.9709101915359497,
1100
+ "learning_rate": 6.0132890365448515e-06,
1101
+ "loss": 0.3948,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 2.311111111111111,
1106
+ "grad_norm": 1.5349321365356445,
1107
+ "learning_rate": 5.980066445182725e-06,
1108
+ "loss": 0.3227,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 2.325925925925926,
1113
+ "grad_norm": 1.5960361957550049,
1114
+ "learning_rate": 5.946843853820599e-06,
1115
+ "loss": 0.3532,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 2.3407407407407406,
1120
+ "grad_norm": 1.8431493043899536,
1121
+ "learning_rate": 5.9136212624584725e-06,
1122
+ "loss": 0.3621,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 2.3555555555555556,
1127
+ "grad_norm": 1.875801920890808,
1128
+ "learning_rate": 5.880398671096345e-06,
1129
+ "loss": 0.4026,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 2.3703703703703702,
1134
+ "grad_norm": 1.7672104835510254,
1135
+ "learning_rate": 5.847176079734221e-06,
1136
+ "loss": 0.3889,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 2.3851851851851853,
1141
+ "grad_norm": 1.5263267755508423,
1142
+ "learning_rate": 5.8139534883720935e-06,
1143
+ "loss": 0.332,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 2.4,
1148
+ "grad_norm": 1.624315857887268,
1149
+ "learning_rate": 5.780730897009967e-06,
1150
+ "loss": 0.3167,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 2.414814814814815,
1155
+ "grad_norm": 1.9534611701965332,
1156
+ "learning_rate": 5.747508305647841e-06,
1157
+ "loss": 0.3733,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 2.4296296296296296,
1162
+ "grad_norm": 1.6925545930862427,
1163
+ "learning_rate": 5.7142857142857145e-06,
1164
+ "loss": 0.3631,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 2.4444444444444446,
1169
+ "grad_norm": 1.6101276874542236,
1170
+ "learning_rate": 5.681063122923588e-06,
1171
+ "loss": 0.3561,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 2.4592592592592593,
1176
+ "grad_norm": 1.5481266975402832,
1177
+ "learning_rate": 5.647840531561463e-06,
1178
+ "loss": 0.349,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 2.474074074074074,
1183
+ "grad_norm": 1.6006097793579102,
1184
+ "learning_rate": 5.614617940199336e-06,
1185
+ "loss": 0.3862,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 2.488888888888889,
1190
+ "grad_norm": 1.4279389381408691,
1191
+ "learning_rate": 5.58139534883721e-06,
1192
+ "loss": 0.3236,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 2.5037037037037035,
1197
+ "grad_norm": 1.2405160665512085,
1198
+ "learning_rate": 5.548172757475083e-06,
1199
+ "loss": 0.3013,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 2.5185185185185186,
1204
+ "grad_norm": 1.3768985271453857,
1205
+ "learning_rate": 5.5149501661129565e-06,
1206
+ "loss": 0.3626,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 2.533333333333333,
1211
+ "grad_norm": 1.6408584117889404,
1212
+ "learning_rate": 5.481727574750831e-06,
1213
+ "loss": 0.3196,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 2.5481481481481483,
1218
+ "grad_norm": 1.6769694089889526,
1219
+ "learning_rate": 5.448504983388705e-06,
1220
+ "loss": 0.3694,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 2.562962962962963,
1225
+ "grad_norm": 1.3804996013641357,
1226
+ "learning_rate": 5.415282392026578e-06,
1227
+ "loss": 0.3502,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 2.5777777777777775,
1232
+ "grad_norm": 1.4021036624908447,
1233
+ "learning_rate": 5.382059800664452e-06,
1234
+ "loss": 0.3306,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 2.5925925925925926,
1239
+ "grad_norm": 1.2684727907180786,
1240
+ "learning_rate": 5.348837209302326e-06,
1241
+ "loss": 0.3106,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 2.6074074074074076,
1246
+ "grad_norm": 1.5925308465957642,
1247
+ "learning_rate": 5.3156146179402e-06,
1248
+ "loss": 0.4211,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 2.6222222222222222,
1253
+ "grad_norm": 1.5546250343322754,
1254
+ "learning_rate": 5.282392026578074e-06,
1255
+ "loss": 0.3301,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 2.637037037037037,
1260
+ "grad_norm": 1.4001022577285767,
1261
+ "learning_rate": 5.2491694352159475e-06,
1262
+ "loss": 0.3746,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 2.651851851851852,
1267
+ "grad_norm": 1.4525564908981323,
1268
+ "learning_rate": 5.215946843853821e-06,
1269
+ "loss": 0.2681,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 2.6666666666666665,
1274
+ "grad_norm": 1.27578604221344,
1275
+ "learning_rate": 5.182724252491694e-06,
1276
+ "loss": 0.3106,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 2.6814814814814816,
1281
+ "grad_norm": 1.4694350957870483,
1282
+ "learning_rate": 5.149501661129569e-06,
1283
+ "loss": 0.3065,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 2.696296296296296,
1288
+ "grad_norm": 1.3258838653564453,
1289
+ "learning_rate": 5.116279069767442e-06,
1290
+ "loss": 0.3233,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 2.7111111111111112,
1295
+ "grad_norm": 1.1991218328475952,
1296
+ "learning_rate": 5.083056478405316e-06,
1297
+ "loss": 0.2786,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 2.725925925925926,
1302
+ "grad_norm": 1.134046196937561,
1303
+ "learning_rate": 5.0498338870431895e-06,
1304
+ "loss": 0.2788,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 2.7407407407407405,
1309
+ "grad_norm": 1.1837220191955566,
1310
+ "learning_rate": 5.016611295681063e-06,
1311
+ "loss": 0.2802,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 2.7555555555555555,
1316
+ "grad_norm": 1.5560253858566284,
1317
+ "learning_rate": 4.983388704318937e-06,
1318
+ "loss": 0.3686,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 2.7703703703703706,
1323
+ "grad_norm": 1.442020297050476,
1324
+ "learning_rate": 4.950166112956811e-06,
1325
+ "loss": 0.3648,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 2.785185185185185,
1330
+ "grad_norm": 1.2866986989974976,
1331
+ "learning_rate": 4.916943521594685e-06,
1332
+ "loss": 0.335,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 2.8,
1337
+ "grad_norm": 0.9921827912330627,
1338
+ "learning_rate": 4.883720930232559e-06,
1339
+ "loss": 0.3052,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 2.814814814814815,
1344
+ "grad_norm": 1.3171212673187256,
1345
+ "learning_rate": 4.850498338870432e-06,
1346
+ "loss": 0.3365,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 2.8296296296296295,
1351
+ "grad_norm": 1.202288031578064,
1352
+ "learning_rate": 4.817275747508306e-06,
1353
+ "loss": 0.2726,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 2.8444444444444446,
1358
+ "grad_norm": 1.5031251907348633,
1359
+ "learning_rate": 4.78405315614618e-06,
1360
+ "loss": 0.366,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 2.859259259259259,
1365
+ "grad_norm": 1.2141317129135132,
1366
+ "learning_rate": 4.750830564784053e-06,
1367
+ "loss": 0.2861,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 2.8740740740740742,
1372
+ "grad_norm": 1.64356529712677,
1373
+ "learning_rate": 4.717607973421927e-06,
1374
+ "loss": 0.3415,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 2.888888888888889,
1379
+ "grad_norm": 1.2897413969039917,
1380
+ "learning_rate": 4.6843853820598015e-06,
1381
+ "loss": 0.3334,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 2.9037037037037035,
1386
+ "grad_norm": 1.192264199256897,
1387
+ "learning_rate": 4.651162790697675e-06,
1388
+ "loss": 0.2927,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 2.9185185185185185,
1393
+ "grad_norm": 1.36125648021698,
1394
+ "learning_rate": 4.617940199335549e-06,
1395
+ "loss": 0.3129,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 2.9333333333333336,
1400
+ "grad_norm": 1.3408805131912231,
1401
+ "learning_rate": 4.5847176079734225e-06,
1402
+ "loss": 0.3277,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 2.948148148148148,
1407
+ "grad_norm": 1.3519293069839478,
1408
+ "learning_rate": 4.551495016611296e-06,
1409
+ "loss": 0.2881,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 2.962962962962963,
1414
+ "grad_norm": 1.2503290176391602,
1415
+ "learning_rate": 4.51827242524917e-06,
1416
+ "loss": 0.3282,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 2.977777777777778,
1421
+ "grad_norm": 1.357706069946289,
1422
+ "learning_rate": 4.4850498338870435e-06,
1423
+ "loss": 0.3319,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 2.9925925925925925,
1428
+ "grad_norm": 1.173913598060608,
1429
+ "learning_rate": 4.451827242524917e-06,
1430
+ "loss": 0.3099,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 3.0,
1435
+ "grad_norm": 1.173913598060608,
1436
+ "learning_rate": 4.451827242524917e-06,
1437
+ "loss": 0.2291,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 3.0148148148148146,
1442
+ "grad_norm": 1.3551340103149414,
1443
+ "learning_rate": 4.418604651162791e-06,
1444
+ "loss": 0.3068,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 3.0296296296296297,
1449
+ "grad_norm": 1.3206164836883545,
1450
+ "learning_rate": 4.3853820598006645e-06,
1451
+ "loss": 0.3416,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 3.0444444444444443,
1456
+ "grad_norm": 1.417013168334961,
1457
+ "learning_rate": 4.352159468438539e-06,
1458
+ "loss": 0.2771,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 3.0592592592592593,
1463
+ "grad_norm": 1.115646243095398,
1464
+ "learning_rate": 4.318936877076413e-06,
1465
+ "loss": 0.2828,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 3.074074074074074,
1470
+ "grad_norm": 1.4733177423477173,
1471
+ "learning_rate": 4.2857142857142855e-06,
1472
+ "loss": 0.3038,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 3.088888888888889,
1477
+ "grad_norm": 1.3604916334152222,
1478
+ "learning_rate": 4.25249169435216e-06,
1479
+ "loss": 0.3128,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 3.1037037037037036,
1484
+ "grad_norm": 1.6025428771972656,
1485
+ "learning_rate": 4.219269102990034e-06,
1486
+ "loss": 0.2808,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 3.1185185185185187,
1491
+ "grad_norm": 1.5683448314666748,
1492
+ "learning_rate": 4.186046511627907e-06,
1493
+ "loss": 0.3538,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 3.1333333333333333,
1498
+ "grad_norm": 1.5745620727539062,
1499
+ "learning_rate": 4.152823920265781e-06,
1500
+ "loss": 0.3071,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 3.148148148148148,
1505
+ "grad_norm": 1.26665461063385,
1506
+ "learning_rate": 4.119601328903655e-06,
1507
+ "loss": 0.2568,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 3.162962962962963,
1512
+ "grad_norm": 1.1559772491455078,
1513
+ "learning_rate": 4.086378737541528e-06,
1514
+ "loss": 0.2655,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 3.1777777777777776,
1519
+ "grad_norm": 1.3667874336242676,
1520
+ "learning_rate": 4.053156146179402e-06,
1521
+ "loss": 0.2943,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 3.1925925925925926,
1526
+ "grad_norm": 1.4076658487319946,
1527
+ "learning_rate": 4.0199335548172765e-06,
1528
+ "loss": 0.242,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 3.2074074074074073,
1533
+ "grad_norm": 1.461408257484436,
1534
+ "learning_rate": 3.98671096345515e-06,
1535
+ "loss": 0.2792,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 3.2222222222222223,
1540
+ "grad_norm": 1.3601031303405762,
1541
+ "learning_rate": 3.953488372093024e-06,
1542
+ "loss": 0.2788,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 3.237037037037037,
1547
+ "grad_norm": 1.9735394716262817,
1548
+ "learning_rate": 3.9202657807308975e-06,
1549
+ "loss": 0.3367,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 3.251851851851852,
1554
+ "grad_norm": 1.5413546562194824,
1555
+ "learning_rate": 3.887043189368771e-06,
1556
+ "loss": 0.2887,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 3.2666666666666666,
1561
+ "grad_norm": 1.5698870420455933,
1562
+ "learning_rate": 3.853820598006645e-06,
1563
+ "loss": 0.3121,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 3.2814814814814817,
1568
+ "grad_norm": 1.4351308345794678,
1569
+ "learning_rate": 3.8205980066445185e-06,
1570
+ "loss": 0.2859,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 3.2962962962962963,
1575
+ "grad_norm": 1.5523098707199097,
1576
+ "learning_rate": 3.787375415282392e-06,
1577
+ "loss": 0.3496,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 3.311111111111111,
1582
+ "grad_norm": 1.5026061534881592,
1583
+ "learning_rate": 3.754152823920266e-06,
1584
+ "loss": 0.2744,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 3.325925925925926,
1589
+ "grad_norm": 1.565753698348999,
1590
+ "learning_rate": 3.72093023255814e-06,
1591
+ "loss": 0.2761,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 3.3407407407407406,
1596
+ "grad_norm": 1.514609456062317,
1597
+ "learning_rate": 3.6877076411960135e-06,
1598
+ "loss": 0.2385,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 3.3555555555555556,
1603
+ "grad_norm": 1.233588695526123,
1604
+ "learning_rate": 3.6544850498338876e-06,
1605
+ "loss": 0.2849,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 3.3703703703703702,
1610
+ "grad_norm": 1.3447370529174805,
1611
+ "learning_rate": 3.621262458471761e-06,
1612
+ "loss": 0.3197,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 3.3851851851851853,
1617
+ "grad_norm": 1.3895092010498047,
1618
+ "learning_rate": 3.588039867109635e-06,
1619
+ "loss": 0.2869,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 3.4,
1624
+ "grad_norm": 1.326200246810913,
1625
+ "learning_rate": 3.5548172757475086e-06,
1626
+ "loss": 0.2937,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 3.414814814814815,
1631
+ "grad_norm": 1.2751388549804688,
1632
+ "learning_rate": 3.5215946843853823e-06,
1633
+ "loss": 0.2611,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 3.4296296296296296,
1638
+ "grad_norm": 1.1317442655563354,
1639
+ "learning_rate": 3.4883720930232564e-06,
1640
+ "loss": 0.2733,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 3.4444444444444446,
1645
+ "grad_norm": 1.3669071197509766,
1646
+ "learning_rate": 3.4551495016611296e-06,
1647
+ "loss": 0.2967,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 3.4592592592592593,
1652
+ "grad_norm": 1.451213002204895,
1653
+ "learning_rate": 3.4219269102990037e-06,
1654
+ "loss": 0.3398,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 3.474074074074074,
1659
+ "grad_norm": 2.680572748184204,
1660
+ "learning_rate": 3.3887043189368774e-06,
1661
+ "loss": 0.2973,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 3.488888888888889,
1666
+ "grad_norm": 1.5603687763214111,
1667
+ "learning_rate": 3.355481727574751e-06,
1668
+ "loss": 0.2669,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 3.5037037037037035,
1673
+ "grad_norm": 1.8472412824630737,
1674
+ "learning_rate": 3.322259136212625e-06,
1675
+ "loss": 0.2956,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 3.5185185185185186,
1680
+ "grad_norm": 1.6677846908569336,
1681
+ "learning_rate": 3.2890365448504984e-06,
1682
+ "loss": 0.329,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 3.533333333333333,
1687
+ "grad_norm": 1.8696357011795044,
1688
+ "learning_rate": 3.2558139534883724e-06,
1689
+ "loss": 0.2735,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 3.5481481481481483,
1694
+ "grad_norm": 1.2237964868545532,
1695
+ "learning_rate": 3.222591362126246e-06,
1696
+ "loss": 0.3011,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 3.562962962962963,
1701
+ "grad_norm": 1.2561728954315186,
1702
+ "learning_rate": 3.1893687707641198e-06,
1703
+ "loss": 0.2568,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 3.5777777777777775,
1708
+ "grad_norm": 1.1599830389022827,
1709
+ "learning_rate": 3.156146179401994e-06,
1710
+ "loss": 0.3025,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 3.5925925925925926,
1715
+ "grad_norm": 1.7549623250961304,
1716
+ "learning_rate": 3.122923588039867e-06,
1717
+ "loss": 0.3252,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 3.6074074074074076,
1722
+ "grad_norm": 1.5652899742126465,
1723
+ "learning_rate": 3.089700996677741e-06,
1724
+ "loss": 0.341,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 3.6222222222222222,
1729
+ "grad_norm": 1.7946059703826904,
1730
+ "learning_rate": 3.056478405315615e-06,
1731
+ "loss": 0.3244,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 3.637037037037037,
1736
+ "grad_norm": 1.5564749240875244,
1737
+ "learning_rate": 3.0232558139534885e-06,
1738
+ "loss": 0.2686,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 3.651851851851852,
1743
+ "grad_norm": 1.439971923828125,
1744
+ "learning_rate": 2.9900332225913626e-06,
1745
+ "loss": 0.3198,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 3.6666666666666665,
1750
+ "grad_norm": 1.590828537940979,
1751
+ "learning_rate": 2.9568106312292363e-06,
1752
+ "loss": 0.2874,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 3.6814814814814816,
1757
+ "grad_norm": 1.2883110046386719,
1758
+ "learning_rate": 2.9235880398671104e-06,
1759
+ "loss": 0.2475,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 3.696296296296296,
1764
+ "grad_norm": 1.2013444900512695,
1765
+ "learning_rate": 2.8903654485049836e-06,
1766
+ "loss": 0.2911,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 3.7111111111111112,
1771
+ "grad_norm": 1.5711296796798706,
1772
+ "learning_rate": 2.8571428571428573e-06,
1773
+ "loss": 0.3113,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 3.725925925925926,
1778
+ "grad_norm": 1.5199639797210693,
1779
+ "learning_rate": 2.8239202657807313e-06,
1780
+ "loss": 0.2462,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 3.7407407407407405,
1785
+ "grad_norm": 1.2884533405303955,
1786
+ "learning_rate": 2.790697674418605e-06,
1787
+ "loss": 0.245,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 3.7555555555555555,
1792
+ "grad_norm": 1.4477325677871704,
1793
+ "learning_rate": 2.7574750830564782e-06,
1794
+ "loss": 0.2409,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 3.7703703703703706,
1799
+ "grad_norm": 1.2022032737731934,
1800
+ "learning_rate": 2.7242524916943523e-06,
1801
+ "loss": 0.2806,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 3.785185185185185,
1806
+ "grad_norm": 1.467168927192688,
1807
+ "learning_rate": 2.691029900332226e-06,
1808
+ "loss": 0.2866,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 3.8,
1813
+ "grad_norm": 2.0435290336608887,
1814
+ "learning_rate": 2.6578073089701e-06,
1815
+ "loss": 0.3211,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 3.814814814814815,
1820
+ "grad_norm": 1.2129874229431152,
1821
+ "learning_rate": 2.6245847176079738e-06,
1822
+ "loss": 0.2765,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 3.8296296296296295,
1827
+ "grad_norm": 1.4887040853500366,
1828
+ "learning_rate": 2.591362126245847e-06,
1829
+ "loss": 0.282,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 3.8444444444444446,
1834
+ "grad_norm": 1.3326512575149536,
1835
+ "learning_rate": 2.558139534883721e-06,
1836
+ "loss": 0.307,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 3.859259259259259,
1841
+ "grad_norm": 1.2139685153961182,
1842
+ "learning_rate": 2.5249169435215947e-06,
1843
+ "loss": 0.3053,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 3.8740740740740742,
1848
+ "grad_norm": 1.6648317575454712,
1849
+ "learning_rate": 2.4916943521594684e-06,
1850
+ "loss": 0.2859,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 3.888888888888889,
1855
+ "grad_norm": 1.550366997718811,
1856
+ "learning_rate": 2.4584717607973425e-06,
1857
+ "loss": 0.3527,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 3.9037037037037035,
1862
+ "grad_norm": 1.641121506690979,
1863
+ "learning_rate": 2.425249169435216e-06,
1864
+ "loss": 0.2735,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 3.9185185185185185,
1869
+ "grad_norm": 1.244675874710083,
1870
+ "learning_rate": 2.39202657807309e-06,
1871
+ "loss": 0.3208,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 3.9333333333333336,
1876
+ "grad_norm": 1.4783977270126343,
1877
+ "learning_rate": 2.3588039867109635e-06,
1878
+ "loss": 0.2869,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 3.948148148148148,
1883
+ "grad_norm": 1.5731481313705444,
1884
+ "learning_rate": 2.3255813953488376e-06,
1885
+ "loss": 0.4189,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 3.962962962962963,
1890
+ "grad_norm": 1.654645562171936,
1891
+ "learning_rate": 2.2923588039867112e-06,
1892
+ "loss": 0.2766,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 3.977777777777778,
1897
+ "grad_norm": 1.6379601955413818,
1898
+ "learning_rate": 2.259136212624585e-06,
1899
+ "loss": 0.3227,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 3.9925925925925925,
1904
+ "grad_norm": 1.3923341035842896,
1905
+ "learning_rate": 2.2259136212624586e-06,
1906
+ "loss": 0.3051,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 4.0,
1911
+ "grad_norm": 1.9158486127853394,
1912
+ "learning_rate": 2.1926910299003322e-06,
1913
+ "loss": 0.2157,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 4.014814814814815,
1918
+ "grad_norm": 1.2792537212371826,
1919
+ "learning_rate": 2.1594684385382063e-06,
1920
+ "loss": 0.2568,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 4.029629629629629,
1925
+ "grad_norm": 1.1235581636428833,
1926
+ "learning_rate": 2.12624584717608e-06,
1927
+ "loss": 0.2664,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 4.044444444444444,
1932
+ "grad_norm": 1.2936333417892456,
1933
+ "learning_rate": 2.0930232558139536e-06,
1934
+ "loss": 0.2966,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 4.059259259259259,
1939
+ "grad_norm": 1.2000664472579956,
1940
+ "learning_rate": 2.0598006644518273e-06,
1941
+ "loss": 0.2487,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 4.074074074074074,
1946
+ "grad_norm": 1.4936013221740723,
1947
+ "learning_rate": 2.026578073089701e-06,
1948
+ "loss": 0.283,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 4.088888888888889,
1953
+ "grad_norm": 1.551798939704895,
1954
+ "learning_rate": 1.993355481727575e-06,
1955
+ "loss": 0.275,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 4.103703703703704,
1960
+ "grad_norm": 1.8705427646636963,
1961
+ "learning_rate": 1.9601328903654487e-06,
1962
+ "loss": 0.3045,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 4.118518518518519,
1967
+ "grad_norm": 1.5146915912628174,
1968
+ "learning_rate": 1.9269102990033224e-06,
1969
+ "loss": 0.2575,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 4.133333333333334,
1974
+ "grad_norm": 2.1336557865142822,
1975
+ "learning_rate": 1.893687707641196e-06,
1976
+ "loss": 0.293,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 4.148148148148148,
1981
+ "grad_norm": 1.673853874206543,
1982
+ "learning_rate": 1.86046511627907e-06,
1983
+ "loss": 0.2228,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 4.162962962962963,
1988
+ "grad_norm": 1.4035648107528687,
1989
+ "learning_rate": 1.8272425249169438e-06,
1990
+ "loss": 0.236,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 4.177777777777778,
1995
+ "grad_norm": 1.5520694255828857,
1996
+ "learning_rate": 1.7940199335548175e-06,
1997
+ "loss": 0.2381,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 4.192592592592592,
2002
+ "grad_norm": 1.8831232786178589,
2003
+ "learning_rate": 1.7607973421926911e-06,
2004
+ "loss": 0.3056,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 4.207407407407407,
2009
+ "grad_norm": 1.524223804473877,
2010
+ "learning_rate": 1.7275747508305648e-06,
2011
+ "loss": 0.2288,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 4.222222222222222,
2016
+ "grad_norm": 1.7227911949157715,
2017
+ "learning_rate": 1.6943521594684387e-06,
2018
+ "loss": 0.3001,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 4.237037037037037,
2023
+ "grad_norm": 1.6464650630950928,
2024
+ "learning_rate": 1.6611295681063126e-06,
2025
+ "loss": 0.2767,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 4.2518518518518515,
2030
+ "grad_norm": 1.462727665901184,
2031
+ "learning_rate": 1.6279069767441862e-06,
2032
+ "loss": 0.2583,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 4.266666666666667,
2037
+ "grad_norm": 1.3373020887374878,
2038
+ "learning_rate": 1.5946843853820599e-06,
2039
+ "loss": 0.1861,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 4.281481481481482,
2044
+ "grad_norm": 1.3069071769714355,
2045
+ "learning_rate": 1.5614617940199335e-06,
2046
+ "loss": 0.2279,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 4.296296296296296,
2051
+ "grad_norm": 2.0804059505462646,
2052
+ "learning_rate": 1.5282392026578074e-06,
2053
+ "loss": 0.3373,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 4.311111111111111,
2058
+ "grad_norm": 1.5276566743850708,
2059
+ "learning_rate": 1.4950166112956813e-06,
2060
+ "loss": 0.2211,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 4.325925925925926,
2065
+ "grad_norm": 1.7238777875900269,
2066
+ "learning_rate": 1.4617940199335552e-06,
2067
+ "loss": 0.2492,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 4.340740740740741,
2072
+ "grad_norm": 1.7892625331878662,
2073
+ "learning_rate": 1.4285714285714286e-06,
2074
+ "loss": 0.2521,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 4.355555555555555,
2079
+ "grad_norm": 1.83062744140625,
2080
+ "learning_rate": 1.3953488372093025e-06,
2081
+ "loss": 0.2445,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 4.37037037037037,
2086
+ "grad_norm": 1.665940284729004,
2087
+ "learning_rate": 1.3621262458471762e-06,
2088
+ "loss": 0.2188,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 4.385185185185185,
2093
+ "grad_norm": 1.7071560621261597,
2094
+ "learning_rate": 1.32890365448505e-06,
2095
+ "loss": 0.2294,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 4.4,
2100
+ "grad_norm": 1.5902904272079468,
2101
+ "learning_rate": 1.2956810631229235e-06,
2102
+ "loss": 0.2443,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 4.4148148148148145,
2107
+ "grad_norm": 1.6071012020111084,
2108
+ "learning_rate": 1.2624584717607974e-06,
2109
+ "loss": 0.2268,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 4.42962962962963,
2114
+ "grad_norm": 1.481217384338379,
2115
+ "learning_rate": 1.2292358803986712e-06,
2116
+ "loss": 0.2245,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 4.444444444444445,
2121
+ "grad_norm": 1.7338011264801025,
2122
+ "learning_rate": 1.196013289036545e-06,
2123
+ "loss": 0.2481,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 4.459259259259259,
2128
+ "grad_norm": 1.83079195022583,
2129
+ "learning_rate": 1.1627906976744188e-06,
2130
+ "loss": 0.2771,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 4.474074074074074,
2135
+ "grad_norm": 1.6256608963012695,
2136
+ "learning_rate": 1.1295681063122925e-06,
2137
+ "loss": 0.2418,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 4.488888888888889,
2142
+ "grad_norm": 1.7368595600128174,
2143
+ "learning_rate": 1.0963455149501661e-06,
2144
+ "loss": 0.2325,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 4.503703703703704,
2149
+ "grad_norm": 1.8986256122589111,
2150
+ "learning_rate": 1.06312292358804e-06,
2151
+ "loss": 0.2685,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 4.518518518518518,
2156
+ "grad_norm": 1.9530152082443237,
2157
+ "learning_rate": 1.0299003322259137e-06,
2158
+ "loss": 0.2734,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 4.533333333333333,
2163
+ "grad_norm": 2.2950448989868164,
2164
+ "learning_rate": 9.966777408637875e-07,
2165
+ "loss": 0.2775,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 4.548148148148148,
2170
+ "grad_norm": 1.7885551452636719,
2171
+ "learning_rate": 9.634551495016612e-07,
2172
+ "loss": 0.2299,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 4.562962962962963,
2177
+ "grad_norm": 1.8106021881103516,
2178
+ "learning_rate": 9.30232558139535e-07,
2179
+ "loss": 0.2665,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 4.5777777777777775,
2184
+ "grad_norm": 1.7523531913757324,
2185
+ "learning_rate": 8.970099667774087e-07,
2186
+ "loss": 0.2514,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 4.592592592592593,
2191
+ "grad_norm": 1.5606251955032349,
2192
+ "learning_rate": 8.637873754152824e-07,
2193
+ "loss": 0.216,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 4.607407407407408,
2198
+ "grad_norm": 1.3957760334014893,
2199
+ "learning_rate": 8.305647840531563e-07,
2200
+ "loss": 0.2133,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 4.622222222222222,
2205
+ "grad_norm": 1.4215636253356934,
2206
+ "learning_rate": 7.973421926910299e-07,
2207
+ "loss": 0.2159,
2208
+ "step": 314
2209
+ },
2210
+ {
2211
+ "epoch": 4.637037037037037,
2212
+ "grad_norm": 1.9139257669448853,
2213
+ "learning_rate": 7.641196013289037e-07,
2214
+ "loss": 0.2799,
2215
+ "step": 315
2216
+ },
2217
+ {
2218
+ "epoch": 4.651851851851852,
2219
+ "grad_norm": 1.5956664085388184,
2220
+ "learning_rate": 7.308970099667776e-07,
2221
+ "loss": 0.2386,
2222
+ "step": 316
2223
+ },
2224
+ {
2225
+ "epoch": 4.666666666666667,
2226
+ "grad_norm": 1.7055957317352295,
2227
+ "learning_rate": 6.976744186046513e-07,
2228
+ "loss": 0.2256,
2229
+ "step": 317
2230
+ },
2231
+ {
2232
+ "epoch": 4.681481481481481,
2233
+ "grad_norm": 2.2495598793029785,
2234
+ "learning_rate": 6.64451827242525e-07,
2235
+ "loss": 0.2795,
2236
+ "step": 318
2237
+ },
2238
+ {
2239
+ "epoch": 4.696296296296296,
2240
+ "grad_norm": 1.4281206130981445,
2241
+ "learning_rate": 6.312292358803987e-07,
2242
+ "loss": 0.2295,
2243
+ "step": 319
2244
+ },
2245
+ {
2246
+ "epoch": 4.711111111111111,
2247
+ "grad_norm": 1.7233028411865234,
2248
+ "learning_rate": 5.980066445182725e-07,
2249
+ "loss": 0.2586,
2250
+ "step": 320
2251
+ },
2252
+ {
2253
+ "epoch": 4.725925925925926,
2254
+ "grad_norm": 2.274329662322998,
2255
+ "learning_rate": 5.647840531561462e-07,
2256
+ "loss": 0.2477,
2257
+ "step": 321
2258
+ },
2259
+ {
2260
+ "epoch": 4.7407407407407405,
2261
+ "grad_norm": 1.6101205348968506,
2262
+ "learning_rate": 5.3156146179402e-07,
2263
+ "loss": 0.2304,
2264
+ "step": 322
2265
+ },
2266
+ {
2267
+ "epoch": 4.7555555555555555,
2268
+ "grad_norm": 1.9844639301300049,
2269
+ "learning_rate": 4.983388704318938e-07,
2270
+ "loss": 0.2888,
2271
+ "step": 323
2272
+ },
2273
+ {
2274
+ "epoch": 4.770370370370371,
2275
+ "grad_norm": 1.7177938222885132,
2276
+ "learning_rate": 4.651162790697675e-07,
2277
+ "loss": 0.2543,
2278
+ "step": 324
2279
+ },
2280
+ {
2281
+ "epoch": 4.785185185185185,
2282
+ "grad_norm": 1.7451181411743164,
2283
+ "learning_rate": 4.318936877076412e-07,
2284
+ "loss": 0.2362,
2285
+ "step": 325
2286
+ },
2287
+ {
2288
+ "epoch": 4.8,
2289
+ "grad_norm": 1.9255115985870361,
2290
+ "learning_rate": 3.9867109634551497e-07,
2291
+ "loss": 0.2689,
2292
+ "step": 326
2293
+ },
2294
+ {
2295
+ "epoch": 4.814814814814815,
2296
+ "grad_norm": 1.6680419445037842,
2297
+ "learning_rate": 3.654485049833888e-07,
2298
+ "loss": 0.2505,
2299
+ "step": 327
2300
+ },
2301
+ {
2302
+ "epoch": 4.82962962962963,
2303
+ "grad_norm": 1.8660964965820312,
2304
+ "learning_rate": 3.322259136212625e-07,
2305
+ "loss": 0.2671,
2306
+ "step": 328
2307
+ },
2308
+ {
2309
+ "epoch": 4.844444444444444,
2310
+ "grad_norm": 1.9916861057281494,
2311
+ "learning_rate": 2.9900332225913623e-07,
2312
+ "loss": 0.2519,
2313
+ "step": 329
2314
+ },
2315
+ {
2316
+ "epoch": 4.859259259259259,
2317
+ "grad_norm": 1.5888378620147705,
2318
+ "learning_rate": 2.6578073089701e-07,
2319
+ "loss": 0.2505,
2320
+ "step": 330
2321
+ },
2322
+ {
2323
+ "epoch": 4.874074074074074,
2324
+ "grad_norm": 1.654725193977356,
2325
+ "learning_rate": 2.3255813953488374e-07,
2326
+ "loss": 0.2466,
2327
+ "step": 331
2328
+ },
2329
+ {
2330
+ "epoch": 4.888888888888889,
2331
+ "grad_norm": 1.4593290090560913,
2332
+ "learning_rate": 1.9933554817275749e-07,
2333
+ "loss": 0.2039,
2334
+ "step": 332
2335
+ },
2336
+ {
2337
+ "epoch": 4.9037037037037035,
2338
+ "grad_norm": 1.5956478118896484,
2339
+ "learning_rate": 1.6611295681063126e-07,
2340
+ "loss": 0.2221,
2341
+ "step": 333
2342
+ },
2343
+ {
2344
+ "epoch": 4.9185185185185185,
2345
+ "grad_norm": 1.33909273147583,
2346
+ "learning_rate": 1.32890365448505e-07,
2347
+ "loss": 0.192,
2348
+ "step": 334
2349
+ },
2350
+ {
2351
+ "epoch": 4.933333333333334,
2352
+ "grad_norm": 1.7868711948394775,
2353
+ "learning_rate": 9.966777408637874e-08,
2354
+ "loss": 0.2477,
2355
+ "step": 335
2356
+ }
2357
+ ],
2358
+ "logging_steps": 1,
2359
+ "max_steps": 335,
2360
+ "num_input_tokens_seen": 0,
2361
+ "num_train_epochs": 5,
2362
+ "save_steps": 150,
2363
+ "stateful_callbacks": {
2364
+ "TrainerControl": {
2365
+ "args": {
2366
+ "should_epoch_stop": false,
2367
+ "should_evaluate": false,
2368
+ "should_log": false,
2369
+ "should_save": true,
2370
+ "should_training_stop": true
2371
+ },
2372
+ "attributes": {}
2373
+ }
2374
+ },
2375
+ "total_flos": 4351170969600.0,
2376
+ "train_batch_size": 1,
2377
+ "trial_name": null,
2378
+ "trial_params": null
2379
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ed647c6ed52eb58ea98587cf28c7cbbfe4b6d197bfd728fefc429cf608e19e4
3
+ size 7416
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)