FerrisMao commited on
Commit
14e433e
·
verified ·
1 Parent(s): e90c02f

Update README.md

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. PID.png +3 -0
  3. README.md +81 -3
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ PID.png filter=lfs diff=lfs merge=lfs -text
PID.png ADDED

Git LFS Details

  • SHA256: b9804a981d271451fb59b3b4d6a5559f7cbaa173d97c412abfa4e7542c0611ef
  • Pointer size: 131 Bytes
  • Size of remote file: 195 kB
README.md CHANGED
@@ -1,3 +1,81 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PID: Physics-Informed Diffusion Model for Infrared Image Generation
2
+
3
+ <img src="PID.png" alt="PID" style="zoom:50%;" />
4
+
5
+ ## Update
6
+
7
+ * 2025/05 The paper is accepted by Pattern Recognition: https://doi.org/10.1016/j.patcog.2025.111816
8
+ * We have released our code.
9
+
10
+ ## Environment
11
+
12
+ It is recommended to install the environment with environment.yaml.
13
+
14
+ ```bash
15
+ conda env create --file=environment.yaml
16
+ ```
17
+
18
+ ## Datasets
19
+
20
+ Download **KAIST** dataset from https://github.com/SoonminHwang/rgbt-ped-detection
21
+
22
+ Download **FLIRv1** dataset from https://www.flir.com/oem/adas/adas-dataset-form/
23
+
24
+ We adopt the official dataset split in our experiments.
25
+
26
+ ## Checkpoint
27
+
28
+ VQGAN can be downloaded from https://ommer-lab.com/files/latent-diffusion/vq-f8.zip (Other GAN models can be downloaded from https://github.com/CompVis/latent-diffusion).
29
+
30
+ TeVNet and PID heckpoints can be found in [HuggingFace](https://huggingface.co/FerrisMao/PID).
31
+
32
+ ## Evaluation
33
+
34
+ Use the shellscript to evaluate. `indir` is the input directory of visible RGB images, `outdir` is the output directory of translated infrared images, `config` is the chosen config in `configs/latent-diffusion/config.yaml`. We prepare some RGB images in `dataset/KAIST` for quick evaluation.
35
+
36
+ ```sh
37
+ bash run_test_kaist512_vqf8.sh
38
+ ```
39
+
40
+ ## Train
41
+
42
+ ### Dataset preparation
43
+
44
+ Prepare corresponding RGB and infrared images with same names in two directories.
45
+
46
+ ### Stage 1: Train TeVNet
47
+
48
+ ```bash
49
+ cd TeVNet
50
+ bash shell/train.sh
51
+ ```
52
+
53
+ ### Stage 2: Train PID
54
+
55
+ To accelerate training, we recommend using our pretrained model.
56
+
57
+ ```bash
58
+ bash shell/run_train_kaist512_vqf8.sh
59
+ ```
60
+
61
+ ## Acknowledgements
62
+
63
+ Our code is built upon [LDM](https://github.com/CompVis/latent-diffusion) and [HADAR](https://github.com/FanglinBao/HADAR). We thank the authors for their excellent work.
64
+
65
+ ## Citation
66
+
67
+ If you find this work is helpful in your research, please consider citing our paper:
68
+
69
+ ```
70
+ @article{mao2026pid,
71
+ title={PID: physics-informed diffusion model for infrared image generation},
72
+ author={Mao, Fangyuan and Mei, Jilin and Lu, Shun and Liu, Fuyang and Chen, Liang and Zhao, Fangzhou and Hu, Yu},
73
+ journal={Pattern Recognition},
74
+ volume={169},
75
+ pages={111816},
76
+ year={2026},
77
+ publisher={Elsevier}
78
+ }
79
+ ```
80
+
81
+ If you have any question, feel free to contact [email protected].