CycleCore-Technologies commited on
Commit
2a0b818
·
verified ·
1 Parent(s): 0bf576f

Upload Maaza-MLM-135M-JSON-v1 - v1.0.0 production release

Browse files
Files changed (1) hide show
  1. README.md +30 -0
README.md CHANGED
@@ -21,6 +21,7 @@ Micro Language Model (135M parameters) specialized for JSON extraction on edge d
21
 
22
  ## Model Details
23
 
 
24
  - **Developer**: CycleCore Technologies
25
  - **Model Name**: CycleCore Maaza MLM-135M-JSON
26
  - **Version**: v1.0.0
@@ -158,6 +159,29 @@ Output:
158
  - **Format**: JSON mode enforced
159
  - **Platform**: CUDA (GPU) or CPU
160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
  ## Limitations and Bias
162
 
163
  ### Known Limitations
@@ -180,6 +204,12 @@ Output:
180
  - **Energy**: Ultra-fast training (48.7s) and efficient inference reduce carbon footprint
181
  - **Transparency**: 100% open training methodology, reproducible results
182
 
 
 
 
 
 
 
183
  ## How to Use
184
 
185
  ### Installation
 
21
 
22
  ## Model Details
23
 
24
+ - **Family**: CycleCore Maaza Series (Micro/Small Language Models for structured JSON extraction)
25
  - **Developer**: CycleCore Technologies
26
  - **Model Name**: CycleCore Maaza MLM-135M-JSON
27
  - **Version**: v1.0.0
 
159
  - **Format**: JSON mode enforced
160
  - **Platform**: CUDA (GPU) or CPU
161
 
162
+ ### JSON Validation
163
+
164
+ After generation, validate the output:
165
+
166
+ ```python
167
+ import json
168
+ from jsonschema import validate # pip install jsonschema
169
+
170
+ # Decode model output
171
+ output = tokenizer.decode(outputs[0], skip_special_tokens=True)
172
+
173
+ # Parse JSON
174
+ try:
175
+ obj = json.loads(output)
176
+ # Validate against schema
177
+ validate(instance=obj, schema=your_json_schema)
178
+ print("✅ Valid JSON matching schema")
179
+ except json.JSONDecodeError:
180
+ print("❌ Invalid JSON")
181
+ except jsonschema.exceptions.ValidationError as e:
182
+ print(f"❌ Schema validation failed: {e.message}")
183
+ ```
184
+
185
  ## Limitations and Bias
186
 
187
  ### Known Limitations
 
204
  - **Energy**: Ultra-fast training (48.7s) and efficient inference reduce carbon footprint
205
  - **Transparency**: 100% open training methodology, reproducible results
206
 
207
+ ## Links
208
+
209
+ - **EdgeJSON Benchmark**: [GitHub Repository](https://github.com/CycleCore/SLMBench) (evaluation harness & dataset)
210
+ - **Technical Documentation**: [SLMBench Docs](https://github.com/CycleCore/SLMBench/tree/main/benchmarks/edge_json)
211
+ - **Model Card (360M)**: [Maaza-SLM-360M-JSON](https://huggingface.co/CycleCoreTechnologies/Maaza-SLM-360M-JSON-v1)
212
+
213
  ## How to Use
214
 
215
  ### Installation