Upload Maaza-MLM-135M-JSON-v1 - v1.0.0 production release
Browse files
README.md
CHANGED
|
@@ -21,6 +21,7 @@ Micro Language Model (135M parameters) specialized for JSON extraction on edge d
|
|
| 21 |
|
| 22 |
## Model Details
|
| 23 |
|
|
|
|
| 24 |
- **Developer**: CycleCore Technologies
|
| 25 |
- **Model Name**: CycleCore Maaza MLM-135M-JSON
|
| 26 |
- **Version**: v1.0.0
|
|
@@ -158,6 +159,29 @@ Output:
|
|
| 158 |
- **Format**: JSON mode enforced
|
| 159 |
- **Platform**: CUDA (GPU) or CPU
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
## Limitations and Bias
|
| 162 |
|
| 163 |
### Known Limitations
|
|
@@ -180,6 +204,12 @@ Output:
|
|
| 180 |
- **Energy**: Ultra-fast training (48.7s) and efficient inference reduce carbon footprint
|
| 181 |
- **Transparency**: 100% open training methodology, reproducible results
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
## How to Use
|
| 184 |
|
| 185 |
### Installation
|
|
|
|
| 21 |
|
| 22 |
## Model Details
|
| 23 |
|
| 24 |
+
- **Family**: CycleCore Maaza Series (Micro/Small Language Models for structured JSON extraction)
|
| 25 |
- **Developer**: CycleCore Technologies
|
| 26 |
- **Model Name**: CycleCore Maaza MLM-135M-JSON
|
| 27 |
- **Version**: v1.0.0
|
|
|
|
| 159 |
- **Format**: JSON mode enforced
|
| 160 |
- **Platform**: CUDA (GPU) or CPU
|
| 161 |
|
| 162 |
+
### JSON Validation
|
| 163 |
+
|
| 164 |
+
After generation, validate the output:
|
| 165 |
+
|
| 166 |
+
```python
|
| 167 |
+
import json
|
| 168 |
+
from jsonschema import validate # pip install jsonschema
|
| 169 |
+
|
| 170 |
+
# Decode model output
|
| 171 |
+
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 172 |
+
|
| 173 |
+
# Parse JSON
|
| 174 |
+
try:
|
| 175 |
+
obj = json.loads(output)
|
| 176 |
+
# Validate against schema
|
| 177 |
+
validate(instance=obj, schema=your_json_schema)
|
| 178 |
+
print("✅ Valid JSON matching schema")
|
| 179 |
+
except json.JSONDecodeError:
|
| 180 |
+
print("❌ Invalid JSON")
|
| 181 |
+
except jsonschema.exceptions.ValidationError as e:
|
| 182 |
+
print(f"❌ Schema validation failed: {e.message}")
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
## Limitations and Bias
|
| 186 |
|
| 187 |
### Known Limitations
|
|
|
|
| 204 |
- **Energy**: Ultra-fast training (48.7s) and efficient inference reduce carbon footprint
|
| 205 |
- **Transparency**: 100% open training methodology, reproducible results
|
| 206 |
|
| 207 |
+
## Links
|
| 208 |
+
|
| 209 |
+
- **EdgeJSON Benchmark**: [GitHub Repository](https://github.com/CycleCore/SLMBench) (evaluation harness & dataset)
|
| 210 |
+
- **Technical Documentation**: [SLMBench Docs](https://github.com/CycleCore/SLMBench/tree/main/benchmarks/edge_json)
|
| 211 |
+
- **Model Card (360M)**: [Maaza-SLM-360M-JSON](https://huggingface.co/CycleCoreTechnologies/Maaza-SLM-360M-JSON-v1)
|
| 212 |
+
|
| 213 |
## How to Use
|
| 214 |
|
| 215 |
### Installation
|