File size: 8,554 Bytes
ff07ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import io
import torch
import numpy as np
from termcolor import colored
try:
    # os.environ["PYOPENGL_PLATFORM"] = "osmesa"
    os.environ["PYOPENGL_PLATFORM"] = "egl"
    import pyrender
except:
    print(colored('pyrender is not correctly imported.', 'red'))
import matplotlib
from matplotlib import colormaps
from matplotlib.colors import LightSource
import matplotlib.pyplot as plt
import math
import cv2
import trimesh
from sklearn.decomposition import PCA
from scipy.spatial.transform import Rotation as R
import torchvision
from .transforms import adjust_colors

BASE_COLORS = np.loadtxt(os.path.abspath(os.path.join(__file__, "../colors.txt")), skiprows=0)/255.
BASE_COLORS = adjust_colors(BASE_COLORS,
                            saturation_threshold = 0.3, 
                            brightness_threshold = 0.8)


def get_colors_rgb(size):
    # np.random.seed(131)
    return BASE_COLORS[np.random.choice(BASE_COLORS.shape[0], size=size, replace=False)]

def tensor_to_BGR(img_tensor):
    img = img_tensor.numpy()*255
    img = img.astype(np.uint8).transpose((1,2,0))[:,:,::-1].copy()
    return img

def pad_img(img, pad_size = None, pad_color_offset = 127):
    if not isinstance(img, np.ndarray):
        img = tensor_to_BGR(img.detach().cpu())
    if pad_size is None:
        pad_size = max(img.shape[0],img.shape[1])

    pad = np.zeros((pad_size,pad_size,img.shape[-1]), dtype=img.dtype) + pad_color_offset
    pad[:img.shape[0], :img.shape[1]] = img.copy()
    return pad


def vis_scale_img(img, scale_map, conf_thresh = 0.3, patch_size=14):
    cmap = plt.get_cmap('coolwarm')

    vis_map = np.zeros((scale_map.shape[0]*patch_size, scale_map.shape[1]*patch_size, 3), dtype=np.uint8)
    loc_i, loc_j = torch.where(scale_map[:,:,0] > conf_thresh)
    for (i, j) in zip(loc_i, loc_j):
        scale = round(math.sqrt(scale_map[i,j,1].item()),2)
        vis_map[i*patch_size: (i+1)*patch_size, j*patch_size: (j+1)*patch_size] = (np.array(cmap(1-scale)[:3][::-1])*255).astype(np.uint8)
    vis_map = pad_img(vis_map, pad_color_offset=0)
    img = pad_img(img)
    # print(img.shape, vis_map.shape)
    assert img.shape == vis_map.shape

    white_img = 0.6*img + 0.4*np.array((255,255,255))

    valid_mask = (vis_map > 0)
    visible_weight = 0.8
    img = vis_map * valid_mask * visible_weight +\
                img * valid_mask * (1-visible_weight)+\
                white_img * (1-valid_mask)

    # draw patches
    loc_i, loc_j = torch.where(scale_map[:,:,0]+1)
    for (i, j) in zip(loc_i.tolist(), loc_j.tolist()):
        cv2.rectangle(img, (j*patch_size, i*patch_size), ((j+1)*patch_size, (i+1)*patch_size),
                        color=(255,255,255), thickness = 2 )

    return img

def vis_meshes_img(img, verts, smpl_faces, cam_intrinsics, colors = None, padding = True):
    if not isinstance(img, np.ndarray):
        img = tensor_to_BGR(img.detach().cpu())

    if padding:
        pad_size = max(img.shape[0],img.shape[1])
        img = pad_img(img, pad_size)

    if colors is not None:
        assert len(colors) == len(verts)

    if len(cam_intrinsics.flatten()) == 9:
        cam_intrinsics = cam_intrinsics.reshape(3,3)
        rgb, depth = render_mesh(img.shape[0],img.shape[1],verts,smpl_faces,cam_intrinsics,colors)
        valid_mask = (depth > 0)[:,:,None] 
        visible_weight = 1.
        rendered_img = rgb[:,:,::-1] * valid_mask * visible_weight +\
                        img * valid_mask * (1-visible_weight)+\
                        img * (1-valid_mask)
    else:
        rendered_img = img
        for i, cam_int in enumerate(cam_intrinsics):
            rgb, depth = render_mesh(img.shape[0],img.shape[1],[verts[i]],smpl_faces,cam_int,colors)
            valid_mask = (depth > 0)[:,:,None] 
            visible_weight = 0.8
            rendered_img = rgb[:,:,::-1] * valid_mask * visible_weight +\
                            rendered_img * valid_mask * (1-visible_weight)+\
                            rendered_img * (1-valid_mask)
    rendered_img = rendered_img.astype(np.uint8)

    return rendered_img


def vis_joints_img(img, j2ds):
    pass

def vis_sat(img, input_size, patch_size, sat_dict, bid, padding=True):
    if not isinstance(img, np.ndarray):
        img = tensor_to_BGR(img.detach().cpu())

    assert max(img.shape[0], img.shape[1]) == input_size
    if padding:
        img = pad_img(img, input_size)

    # visualize patches
    pos_y, pos_x = sat_dict['pos_y'][bid], sat_dict['pos_x'][bid]
    pos_y = (pos_y * input_size).detach().int().cpu().numpy()
    pos_x = (pos_x * input_size).detach().int().cpu().numpy()

    lvls = sat_dict['lvl']
    if lvls is None:
        lvl = np.zeros(len(pos_x),dtype=int)
    else:
        lvl = lvls[bid].detach().int().cpu().numpy()

    for (cx, cy, l) in zip(pos_x, pos_y, lvl):
        if l == 0:
            half_patch = patch_size//2
            # color = (139, 97, 233)
            color = (173,178,241)
        elif l == 1:
            half_patch = patch_size
            # color = (246, 222, 118)
            color = (239,198,175)
        elif l >= 2:
            half_patch = patch_size*(2**(l-1))
            # color = (0,0,0)
            color = (255, 255, 255)
        else:
            raise NotImplementedError

        x1, x2 = cx - half_patch, cx + half_patch
        y1, y2 = cy - half_patch, cy + half_patch

        if l>0:
            k = 7*l
            img[y1:y2,x1:x2] = 0.5*cv2.blur(img[y1:y2,x1:x2].copy(),(k,k)) + 0.5*np.array(color)
        else:
            # pass
            img[y1:y2,x1:x2] = 0.5*img[y1:y2,x1:x2].copy() + 0.5*np.array(color)


    for (cx, cy, l) in zip(pos_x, pos_y, lvl):
        if l == 0:
            half_patch = patch_size//2
            color = (139, 97, 233)
        elif l == 1:
            half_patch = patch_size
            color = (246, 222, 118)
        elif l >= 2:
            half_patch = patch_size*(2**(l-1))
            color = (255, 255, 255)
        else:
            raise NotImplementedError
        
        x1, x2 = cx - half_patch, cx + half_patch
        y1, y2 = cy - half_patch, cy + half_patch

        cv2.rectangle(img, (x1, y1), (x2, y2),
            color=(255,255,255), thickness = 2 )
        

    return img

def vis_boxes(img, boxes, padding=True, color = (0,0,255)):
    if not isinstance(img, np.ndarray):
        img = tensor_to_BGR(img.detach().cpu())
    if padding:
        pad_size = max(img.shape[0],img.shape[1])
        img = pad_img(img, pad_size)
    
    for bbox in boxes:
        bbox = bbox.int().tolist()
        cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[2], bbox[3]),
            color=color, thickness = 2 )
    
    return img


def get_img_from_fig(fig, dpi=120):
    buf = io.BytesIO()
    fig.savefig(buf, format="png", dpi=dpi, transparent=False, bbox_inches="tight", pad_inches=0)
    buf.seek(0)
    img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
    buf.close()
    img = cv2.imdecode(img_arr, 1)
    # img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
    return img


def render_mesh(height, width, meshes, face, cam_intrinsics, colors = None):
    
    # renderer
    scene = pyrender.Scene(ambient_light=(0.3, 0.3, 0.3))
    renderer = pyrender.OffscreenRenderer(viewport_width=width, viewport_height=height, point_size=1.0)

    # light
    light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=0.8)
    light_pose = np.eye(4)
    light_pose[:3, 3] = np.array([0, -1, 1])
    scene.add(light, pose=light_pose)
    light_pose[:3, 3] = np.array([0, 1, 1])
    scene.add(light, pose=light_pose)
    light_pose[:3, 3] = np.array([1, 1, 2])
    scene.add(light, pose=light_pose)

    # mesh
    if colors is None:
        colors = get_colors_rgb(len(meshes))

    for i, mesh in enumerate(meshes):
        mesh = trimesh.Trimesh(mesh, face)
        rot = trimesh.transformations.rotation_matrix(np.radians(180), [1, 0, 0])
        mesh.apply_transform(rot)
        material = pyrender.MetallicRoughnessMaterial(metallicFactor=0.0, alphaMode='OPAQUE', baseColorFactor=(*colors[i], 1.0))
        mesh = pyrender.Mesh.from_trimesh(mesh, material=material, smooth=True)

        scene.add(mesh, f'mesh_{i}')


    # camera
    f=np.array([cam_intrinsics[0,0],cam_intrinsics[1,1]])
    c=cam_intrinsics[0:2,2]
    camera = pyrender.camera.IntrinsicsCamera(fx=f[0], fy=f[1], cx=c[0], cy=c[1])
    scene.add(camera)

    # render
    rgb, depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
    rgb = rgb[:,:,:3].astype(np.float32)
    renderer.delete()
    return rgb, depth